[Dune] parallel DUNE grid for implementing a spherical shell (UGGrid)

Christian Engwer christian.engwer at uni-muenster.de
Fri Nov 16 20:54:00 CET 2012


On Fri, Nov 16, 2012 at 06:19:03PM +0000, Eike Mueller wrote:
> Dear all,
> 
> I can now also generate the icosahedral macro grid (see attached
> .vtu file), however when I write this out with the DGFWriter, the
> prisms do not get written to disk. Is there a way around this or do
> I have to do it by hand?

you might consider using one of the other file formats... did you try
the amiramesh writer/reader?

Although I'm not sure how amiramesh handler boundary
parametrizations... If this is a problem, you could also easily
modifying the reader to use predefined boundary-parametrizations
instead of the missing ones from the file.

Christian

> Thanks a lot,
> 
> Eike
> 
> 
> 
> Eike Mueller wrote:
> >Dear all,
> >
> >thank you very much for all your help, I have now solved the load
> >balancing issue, at least for the hexahedral grid.
> >I wrote some sequential code which creates a macro grid with p
> >elements using the UGgrid factory, and save this as a .dgf file. I
> >then wrote a parser for .dgf files, which reads the grid from disk
> >and also adds boundary segments (this is not supported for UG at
> >the moment). If I then read in my .dgf file on p processors, all I
> >need to do is call loadBalance() and each processor automatically
> >ends up with one element, which I can then refine further. It
> >means that at some point I store the entire macro grid on one
> >processor, but I think that is fine, as this grid will maximally
> >contain 10,000s of cells, and there is probably no way this can be
> >avoided, even if I set up the grid with a factory in one go.
> >
> >I did come across some strange behaviour in the DGFWriter, though.
> >When writing out the file, I got a
> >
> >Warning: Ignoring nonpositive boundary id: 0
> >
> >and it would not add this boundary segment to the .dgf file, which
> >meant I could not read it properly later. I traced this down to
> >this bit of code in dune/grid/io/file/dgfparser/dgfwriter.hh:
> >
> >inline void DGFWriter< GV >::write ( std::ostream &gridout ) const
> >[...]
> >if( boundaryId <= 0 )
> >        {
> >          std::cerr << "Warning: Ignoring nonpositive boundary id: "
> >                    << boundaryId << "." << std::endl;
> >          continue;
> >        }
> >[...]
> >
> >If I change the condition to "if( boundaryId < 0 )"
> >
> >it works. Why does it exclude boundaryId = 0?
> >
> >Next goal is doing the same for the icosahedral grid, for this I
> >will need prisms, and again they should only be subdivided in the
> >horizontal direction.
> >
> >Thanks, Eike
> >
> >PS: Andreas, the code has been checked into the GungHo! repository.
> >
> >Oliver Sander wrote:
> >>Am 13.11.2012 12:29, schrieb Dedner, Andreas:
> >>>I might be wrong but I think Yasp only distributes the macro
> >>>grid like ALU does?
> >>>So if you start with only one element then there is no way to
> >>>loadbalance it.
> >>>As far as I know only UG differs from this behaviour allowing
> >>>to loadbalance leaf elements
> >>>"arbitrarily" over the processors....
> >>Yes, UG supposedly does that.  It is called 'vertical load
> >>balancing'.  I have never
> >>actually done that, though (never had to).  Therefore I don't
> >>really know how
> >>it works and whether you need special flags or anything.
> >>-- 
> >>Oliver
> >>
> >>>________________________________________
> >>>From: dune-bounces+a.s.dedner=warwick.ac.uk at dune-project.org
> >>>[dune-bounces+a.s.dedner=warwick.ac.uk at dune-project.org] on
> >>>behalf of Eike Mueller [E.Mueller at bath.ac.uk]
> >>>Sent: 13 November 2012 11:04
> >>>To: Oliver Sander
> >>>Cc: dune at dune-project.org
> >>>Subject: Re: [Dune] parallel DUNE grid for implementing a
> >>>spherical shell (UGGrid)
> >>>
> >>>To make it even simpler, I replaced the UGGrid by an 1x1x1
> >>>YaspGrid, i.e. I start with a grid with one element. If I
> >>>globalRefine() this once, and then loadBalance(), one
> >>>processor always ends up with the entire grid. I must be
> >>>missing something
> >>>very basic here.
> >>>Does the load balancing in DUNE assume that if a father cell
> >>>is owned by a processor, then all it's children on the finer
> >>>levels
> >>>are owned by the same processor? But then calling
> >>>loadBalance() after grid refinement would not make sense. If I
> >>>start with a
> >>>2x2x2 grid and do not refine, then it works, i.e. if I run on
> >>>8 cores, then each of them ends up getting one element.
> >>>
> >>>Thanks,
> >>>
> >>>Eike
> >>>
> >>>Oliver Sander wrote:
> >>>>Am 12.11.2012 16:01, schrieb Eike Mueller:
> >>>>>Hi Oliver,
> >>>>>
> >>>>>I tried several other strategies, but without any luck. Whatever I do,
> >>>>>the algorithm seems to refuse to split up the macro cells, i.e. the 6
> >>>>>elements I insert with the grid factory.
> >>>>>
> >>>>>I also tried to simplify the problem as much as possible. I now create
> >>>>>one unit cube with the grid factory, do not insert any boundary
> >>>>>segments and refine the grid by calling globalRefine(refcount), so
> >>>>>that I end up with a cartesian unit cube split into 8^refcount
> >>>>>elements. I then balance the grid with loadBalance() (i.e. no
> >>>>>arguments). I would have thought that that should work. Still, if I
> >>>>>refine 1,2 or 3 times (i.e. I should end up with 8,64,512 elements),
> >>>>>for an 8 core run only one process stores the entire grid.
> >>>>This should really work, can you post your test program?
> >>>>
> >>>>But be careful: If you load-balance small grids then all processors
> >>>>get all elements, but most of them only as ghosts.  Did you
> >>>>check that?
> >>>>
> >>>>cheers,
> >>>>Oliver
> >>>>
> >>>>>Could this be a problem with the grid factory?
> >>>>>
> >>>>>Thanks,
> >>>>>
> >>>>>Eike
> >>>>>
> >>>>>Oliver Sander wrote:
> >>>>>>Am 06.11.2012 08:44, schrieb Markus Blatt:
> >>>>>>>Hey Eike,
> >>>>>>>
> >>>>>>>On Mon, Nov 05, 2012 at 07:17:48PM +0000, Eike Mueller wrote:
> >>>>>>>>>And loadbalancing would only be needed for the macrogrid, e.g.,
> >>>>>>>>>not dynamic.
> >>>>>>>>>
> >>>>>>>>That's right, in the code I would refine the grid until there is
> >>>>>>>>only cell per processor (this is the macrogrid). Then I would call
> >>>>>>>>loadBalance, followed by further grid refinement. So for example
> >>>>>>>>with 24 processors, I would subdivide each of the six cells in the
> >>>>>>>>original grid into four cells, then loadbalance that
> >>>>>>>>grid and refine
> >>>>>>>>further.
> >>>>>>>Actually, this approach could be the root of the problem. The
> >>>>>>>loadbalancing is a heuristic algorithm and normally one always gets
> >>>>>>>some load imbalance here. But if you just have as many cells as
> >>>>>>>processor, then naturally some will end up with no cells at all.
> >>>>>>This is true, but it is not the whole truth.
> >>>>>>
> >>>>>>The default load balancing strategy of UG is Recursive Coordinate
> >>>>>>Bisection.
> >>>>>>This means roughly that the grid bounding box is partitionend into
> >>>>>>axis-aligned
> >>>>>>cells, and these cells are assigned to processors.  I reckon (I
> >>>>>>didn't check)
> >>>>>>that since your grid is a hollow sphere, some cells
> >>>>>>simply remain empty.
> >>>>>>
> >>>>>>UG offers several other strategies, but all this really is hardly
> >>>>>>tested.
> >>>>>>Have a look at the lbs method in ug/parallel/dddif/lb.c:533 for some
> >>>>>>alternatives.
> >>>>>>
> >>>>>>good luck,
> >>>>>>Oliver
> >>>>>>
> >>>>>>>How about doing some more refinement before load balancing?
> >>>>>>>
> >>>>>>>Cheers,
> >>>>>>>
> >>>>>>>Markus
> >>>>>>>
> >>>>>>
> >>>>>>_______________________________________________
> >>>>>>Dune mailing list
> >>>>>>Dune at dune-project.org
> >>>>>>http://lists.dune-project.org/mailman/listinfo/dune
> >>>>>
> >>>
> >>>-- 
> >>>Dr Eike Mueller
> >>>Research Officer
> >>>
> >>>Department of Mathematical Sciences
> >>>University of Bath
> >>>Bath BA2 7AY, United Kingdom
> >>>
> >>>+44 1225 38 5633
> >>>e.mueller at bath.ac.uk
> >>>http://people.bath.ac.uk/em459/
> >>>
> >>>_______________________________________________
> >>>Dune mailing list
> >>>Dune at dune-project.org
> >>>http://lists.dune-project.org/mailman/listinfo/dune
> >>>
> >>>
> >>
> >
> >
> 
> 
> -- 
> Dr Eike Mueller
> Research Officer
> 
> Department of Mathematical Sciences
> University of Bath
> Bath BA2 7AY, United Kingdom
> 
> +44 1225 38 5633
> e.mueller at bath.ac.uk
> http://people.bath.ac.uk/em459/

> <?xml version="1.0"?>
> <VTKFile type="UnstructuredGrid" version="0.1" byte_order="LittleEndian">
>   <UnstructuredGrid>
>     <Piece NumberOfCells="320" NumberOfPoints="324">
>       <CellData Scalars="data">
>         <DataArray type="Float32" Name="data" NumberOfComponents="1" format="appended" offset="0" />
>       </CellData>
>       <Points>
>         <DataArray type="Float32" Name="Coordinates" NumberOfComponents="3" format="appended" offset="1716" />
>       </Points>
>       <Cells>
>         <DataArray type="Int32" Name="connectivity" NumberOfComponents="1" format="appended" offset="6908" />
>         <DataArray type="Int32" Name="offsets" NumberOfComponents="1" format="appended" offset="17156" />
>         <DataArray type="UInt8" Name="types" NumberOfComponents="1" format="appended" offset="18872" />
>       </Cells>
>     </Piece>
>   </UnstructuredGrid>
>   <AppendedData encoding="base64">
>     _AAUAAA==AADOQgAAwEAAgJRDAADmQgCAiEMAAH9DAACFQwAALEMAAClDAAANQwAA9EIAANZCAABIQgAAbEIAACNDAADAQAAAcEIAAIRCAABUQwAAYEIAALZCAAAoQwAAJ0MAgIZDAAA2QwAAtEIAAJdDAAAjQwCAmUMAAL5CAAAQQQAAjUMAAMxCAAAyQwCAhkMAAHdDAADiQgAAWEMAgJFDAACNQwAAZUMAALpCAICCQwCAi0MAAMBBAICUQwAAHkMAAKhCAABrQwAASEIAAFBBAADAQAAAtkIAADRDAACKQwCAiEMAAA5DAAACQwAA6EIAAIA/AABhQwAA+kIAAI5DAADgQAAAMEMAANJCAAD8QgCAkEMAAEFDAADCQgAA+EIAgJNDAAB4QgAAgkIAAH5DAACuQgAAakMAAI5DAAAsQgAAFkMAAE9DAAB4QwAAHEMAAJVDAADYQgAAmEMAAPZCAAB7QwAA5EIAAG9DAAB8QwAAoEEAAGxDAACwQgAAW0MAALhCAACEQgAA0EEAAH5DAICBQwCAnUMAAHpDAABqQwAAaEIAADtDAAAkQgAAiEEAAMxCAABFQwAAfEMAAHxDAACKQwAANUMAAIxDAAD8QgAAIUMAgIRDAAB5QwAAjkMAAGxCAAAgQgAAskIAgIdDAICKQwAAMUMAACtDAABxQwAA5kIAAIpCAAA8QgAAd0MAAIBDAICUQwAABEIAADpDAAAlQwAAhUMAAEtDAAALQwAAEEMAAABBAACOQgAAkkMAAD1DAABfQwAAxkIAAPBBAAAoQwAA4EEAgJ1DAADIQgAAikIAAIpDAABzQwAAWkMAAKBAAACPQwAAMEEAAPJCAAAMQgAAbEIAAEBCAAAkQwAAZEMAAKJCAADwQQAAkkIAAFxDAABqQwAAqEIAADBCAADkQgAA2EEAAIBBAICXQwAAe0MAgJlDAABNQwAAxkIAAIBBAACQQgAAjkIAgIpDAADgQQCAnUMAADxCAAAIQgCAjEMAAGhCAAAbQwAAPUMAAOpCAACWQgAABEIAAFpDAADgQQAAfEIAgJFDAAB4QwAAKUMAAGBCAAAkQwCAjUMAAKZCAABUQgAACkMAAE5DAAAgQgAAwEEAADJDAAB4QwAAkEMAAHlDAACaQgCAnkMAAOhCAAD4QgAAX0MAAIdDAAA3QwAAekMAAAtDAAAsQwAAoEAAADBCAACMQgAAYUMAgJVDAABqQwAA0EEAABVDAAAiQwAAeEIAAJhDAADqQgCAmUMAgJ1DAACAQAAA4EEAAFNDAAA2QwAAFEMAADNDAICXQwAAYkMAAEBCAADIQgAAXkMAgIdDAABIQgAAqkIAAElDAAB0QgAAAkMAAJxCAADSQgAASEMAADBDAACoQgAAmUMAAEpDAADSQgAAFEMAAAhDAACNQwAACkMAAPhCAICKQwAADkMAAMBBAAAgQgAAREMAACxDAABbQwAAM0MAAIdDAACGQwAAF0MAAC1DAAC2QgAASUMAAAJDAICSQwAABkMAAIJDAABzQwAAb0MAAA1DAADGQgAAREMAgJ9DAAAtQwAALUMAABRDAACbQwAAB0MAAI9DAACZQwAAjkMAAJZDAAAgQQAAgEAAADBDAAA2QwAAwEIAAGNDAACgQAAAbEMAAGxCAAAyQwAA4EAAAARDAACaQwAALEMAAAtDAAB5QwAAwEIAAHpDAACDQwAAhkI=MA8AAA==1+BOPzK3/z4AAAAA4kQuPz3LJT8Kmw8+pStSP45o1z7YW2g+qqdkPwhRDT8AAAAA+pxAP/M+Nz/VuB4+L0toPz8V7j6naIA+MzPzPsDARD9NTpY+OF4nPwrzDj/X4M4+ZmYGP7p2WT+mIKY+Wfw4Pyb/HT+qp+Q+wMBEP01Olj4zM/M+unZZP6Ygpj5mZgY/2FtoPqUrUj+OaNc+1+DOPjheJz8K8w4/p2iAPi9LaD8/Fe4+qqfkPln8OD8m/x0/AAAAANfgTj8yt/8+CpsPPuJELj89yyU/AAAAAKqnZD8IUQ0/1bgePvqcQD/zPjc/TU6WPjMz8z7AwEQ/piCmPmZmBj+6dlk/CvMOP9fgzj44Xic/Jv8dP6qn5D5Z/Dg/PcslPwqbDz7iRC4/8z43P9W4Hj76nEA/jmjXPthbaD6lK1I/PxXuPqdogD4vS2g/Mrf/PgAAAADX4E4/CFENPwAAAACqp2Q/pStSP45o1z7YW2i+4kQuPz3LJT8Kmw++L0toPz8V7j6naIC++pxAP/M+Nz/VuB6+wMBEP01Olj4zM/O+OF4nPwrzDj/X4M6+unZZP6Ygpj5mZga/Wfw4Pyb/HT+qp+S+MzPzPsDARD9NTpa+ZmYGP7p2WT+mIKa+PcslPwqbDz7iRC6/CvMOP9fgzj44Xie/8z43P9W4Hj76nEC/Jv8dP6qn5D5Z/Di/Mrf/PgAAAADX4E6/jmjXPthbaD6lK1K/CFENPwAAAACqp2S/PxXuPqdogD4vS2i/TU6WPjMz8z7AwES/piCmPmZmBj+6dlm/1+DOPjheJz8K8w6/qqfkPln8OD8m/x2/2FtoPqUrUj+OaNe+p2iAPi9LaD8/Fe6+CpsPPuJELj89yyW/1bgePvqcQD/zPje/AAAAANfgTj8yt/++AAAAAKqnZD8IUQ2/1+BOPzK3/74AAAAApStSP45o177YW2g+4kQuPz3LJb8Kmw8+qqdkPwhRDb8AAAAAL0toPz8V7r6naIA++pxAP/M+N7/VuB4+wMBEP01Olr4zM/M+OF4nPwrzDr/X4M4+unZZP6Ygpr5mZgY/Wfw4Pyb/Hb+qp+Q+MzPzPsDARL9NTpY+ZmYGP7p2Wb+mIKY+PcslPwqbD77iRC4/CvMOP9fgzr44Xic/8z43P9W4Hr76nEA/Jv8dP6qn5L5Z/Dg/jmjXPthbaL6lK1I/PxXuPqdogL4vS2g/TU6WPjMz877AwEQ/piCmPmZmBr+6dlk/1+DOPjheJ78K8w4/qqfkPln8OL8m/x0/2FtoPqUrUr+OaNc+p2iAPi9LaL8/Fe4+CpsPPuJELr89yyU/1bgePvqcQL/zPjc/AAAAANfgTr8yt/8+AAAAAKqnZL8IUQ0/4kQuPz3LJb8Kmw++pStSP45o177YW2i++pxAP/M+N7/VuB6+L0toPz8V7r6naIC+MzPzPsDARL9NTpa+OF4nPwrzDr/X4M6+ZmYGP7p2Wb+mIKa+Wfw4Pyb/Hb+qp+S+wMBEP01Olr4zM/O+unZZP6Ygpr5mZga/2FtoPqUrUr+OaNe+1+DOPjheJ78K8w6/p2iAPi9LaL8/Fe6+qqfkPln8OL8m/x2/AAAAANfgTr8yt/++CpsPPuJELr89yyW/AAAAAKqnZL8IUQ2/1bgePvqcQL/zPje/TU6WPjMz877AwES/piCmPmZmBr+6dlm/CvMOP9fgzr44Xie/Jv8dP6qn5L5Z/Di/PcslPwqbD77iRC6/8z43P9W4Hr76nEC/jmjXPthbaL6lK1K/PxXuPqdogL4vS2i/1+BOvzK3/z4AAAAApStSv45o1z7YW2g+4kQuvz3LJT8Kmw8+qqdkvwhRDT8AAAAAL0tovz8V7j6naIA++pxAv/M+Nz/VuB4+wMBEv01Olj4zM/M+OF4nvwrzDj/X4M4+unZZv6Ygpj5mZgY/Wfw4vyb/HT+qp+Q+MzPzvsDARD9NTpY+ZmYGv7p2WT+mIKY+PcslvwqbDz7iRC4/CvMOv9fgzj44Xic/8z43v9W4Hj76nEA/Jv8dv6qn5D5Z/Dg/Mrf/vgAAAADX4E4/jmjXvthbaD6lK1I/CFENvwAAAACqp2Q/PxXuvqdogD4vS2g/TU6WvjMz8z7AwEQ/piCmvmZmBj+6dlk/1+DOvjheJz8K8w4/qqfkvln8OD8m/x0/2FtovqUrUj+OaNc+p2iAvi9LaD8/Fe4+CpsPvuJELj89yyU/1bgevvqcQD/zPjc/4kQuvz3LJT8Kmw++pStSv45o1z7YW2i++pxAv/M+Nz/VuB6+L0tovz8V7j6naIC+MzPzvsDARD9NTpa+OF4nvwrzDj/X4M6+ZmYGv7p2WT+mIKa+Wfw4vyb/HT+qp+S+wMBEv01Olj4zM/O+unZZv6Ygpj5mZga/2FtovqUrUj+OaNe+1+DOvjheJz8K8w6/p2iAvi9LaD8/Fe6+qqfkvln8OD8m/x2/CpsPvuJELj89yyW/1bgevvqcQD/zPje/TU6WvjMz8z7AwES/piCmvmZmBj+6dlm/CvMOv9fgzj44Xie/Jv8dv6qn5D5Z/Di/PcslvwqbDz7iRC6/8z43v9W4Hj76nEC/jmjXvthbaD6lK1K/PxXuvqdogD4vS2i/Mrf/vgAAAADX4E6/CFENvwAAAACqp2S/1+BOvzK3/74AAAAA4kQuvz3LJb8Kmw8+pStSv45o177YW2g+qqdkvwhRDb8AAAAA+pxAv/M+N7/VuB4+L0tovz8V7r6naIA+MzPzvsDARL9NTpY+OF4nvwrzDr/X4M4+ZmYGv7p2Wb+mIKY+Wfw4vyb/Hb+qp+Q+wMBEv01Olr4zM/M+unZZv6Ygpr5mZgY/2FtovqUrUr+OaNc+1+DOvjheJ78K8w4/p2iAvi9LaL8/Fe4+qqfkvln8OL8m/x0/CpsPvuJELr89yyU/1bgevvqcQL/zPjc/TU6WvjMz877AwEQ/piCmvmZmBr+6dlk/CvMOv9fgzr44Xic/Jv8dv6qn5L5Z/Dg/PcslvwqbD77iRC4/8z43v9W4Hr76nEA/jmjXvthbaL6lK1I/PxXuvqdogL4vS2g/pStSv45o177YW2i+4kQuvz3LJb8Kmw++L0tovz8V7r6naIC++pxAv/M+N7/VuB6+wMBEv01Olr4zM/O+OF4nvwrzDr/X4M6+unZZv6Ygpr5mZga/Wfw4vyb/Hb+qp+S+MzPzvsDARL9NTpa+ZmYGv7p2Wb+mIKa+PcslvwqbD77iRC6/CvMOv9fgzr44Xie/8z43v9W4Hr76nEC/Jv8dv6qn5L5Z/Di/jmjXvthbaL6lK1K/PxXuvqdogL4vS2i/TU6WvjMz877AwES/piCmvmZmBr+6dlm/1+DOvjheJ78K8w6/qqfkvln8OL8m/x2/2FtovqUrUr+OaNe+p2iAvi9LaL8/Fe6+CpsPvuJELr89yyW/1bgevvqcQL/zPje/Mrf/PtfgTj8AAAAACFENP6qnZD8AAAAAMrd/PgVMZz97Ch6+CFGNPt2kfz9FrS6+AAAAANhbaD8Km4++AAAAAKdogD/VuJ6+AAAAADMzcz8AAAAAAAAAAGZmhj8AAAAAMrd/PgVMZz97Ch4+CFGNPt2kfz9FrS4+upMIJNhbaD8Km48+HvQWJKdogD/VuJ4+Mrf/vtfgTj8AAAAACFENv6qnZD8AAAAAMrd/vgVMZz97Ch4+CFGNvt2kfz9FrS4+Mrd/vgVMZz97Ch6+CFGNvt2kfz9FrS6+Mrf/PtfgTr8AAAAACFENP6qnZL8AAAAAMrd/PgVMZ797Ch4+CFGNPt2kf79FrS4+AAAAANhbaL8Km48+AAAAAKdogL/VuJ4+AAAAADMzc78AAAAAAAAAAGZmhr8AAAAAMrd/PgVMZ797Ch6+CFGNPt2kf79FrS6+upMIJNhbaL8Km4++HvQWJKdogL/VuJ6+Mrf/vtfgTr8AAAAACFENv6qnZL8AAAAAMrd/vgVMZ797Ch4+CFGNvt2kf79FrS4+Mrd/vgVMZ797Ch6+CFGNvt2kf79FrS6+1+BOPwAAAAAyt/8+qqdkPwAAAAAIUQ0/BUxnP3sKHr4yt38+3aR/P0WtLr4IUY0+2FtoPwqbj74AAAAAp2iAP9W4nr4AAAAAMzNzPwAAAAAAAAAAZmaGPwAAAAAAAAAABUxnP3sKHj4yt38+3aR/P0WtLj4IUY0+2FtoPwqbjz66kwgkp2iAP9W4nj4e9BYk1+BOPwAAAAAyt/++qqdkPwAAAAAIUQ2/BUxnP3sKHj4yt3++3aR/P0WtLj4IUY2+BUxnP3sKHr4yt3++3aR/P0WtLr4IUY2+1+BOvwAAAAAyt/8+qqdkvwAAAAAIUQ0/BUxnv3sKHj4yt38+3aR/v0WtLj4IUY0+2Ftovwqbjz4AAAAAp2iAv9W4nj4AAAAAMzNzvwAAAAAAAAAAZmaGvwAAAAAAAAAABUxnv3sKHr4yt38+3aR/v0WtLr4IUY0+2Ftovwqbj766kwgkp2iAv9W4nr4e9BYk1+BOvwAAAAAyt/++qqdkvwAAAAAIUQ2/BUxnv3sKHr4yt3++3aR/v0WtLr4IUY2+BUxnv3sKHj4yt3++3aR/v0WtLj4IUY2+AAAAADK3/z7X4E4/AAAAAAhRDT+qp2Q/ewoevjK3fz4FTGc/Ra0uvghRjT7dpH8/CpuPvgAAAADYW2g/1bievgAAAACnaIA/AAAAAAAAAAAzM3M/AAAAAAAAAABmZoY/ewoePjK3fz4FTGc/Ra0uPghRjT7dpH8/CpuPPrqTCCTYW2g/1biePh70FiSnaIA/AAAAADK3/77X4E4/AAAAAAhRDb+qp2Q/ewoePjK3f74FTGc/Ra0uPghRjb7dpH8/ewoevjK3f74FTGc/Ra0uvghRjb7dpH8/AAAAADK3/z7X4E6/AAAAAAhRDT+qp2S/ewoePjK3fz4FTGe/Ra0uPghRjT7dpH+/CpuPPgAAAADYW2i/1biePgAAAACnaIC/AAAAAAAAAAAzM3O/AAAAAAAAAABmZoa/ewoevjK3fz4FTGe/Ra0uvghRjT7dpH+/CpuPvrqTCCTYW2i/1bievh70FiSnaIC/AAAAADK3/77X4E6/AAAAAAhRDb+qp2S/ewoevjK3f74FTGe/Ra0uvghRjb7dpH+/ewoePjK3f74FTGe/Ra0uPghRjb7dpH+/AB4AAB==AAAAAAIAAAABAAAAAwAAAAUAAAAEAAAAAQAAAAcAAAAGAAAABAAAAAkAAAAIAAAAAgAAAAcAAAABAAAABQAAAAkAAAAEAAAAAgAAAAoAAAAHAAAABQAAAAsAAAAJAAAABgAAAA0AAAAMAAAACAAAAA8AAAAOAAAADAAAABEAAAAQAAAADgAAABMAAAASAAAADQAAABEAAAAMAAAADwAAABMAAAAOAAAADQAAABQAAAARAAAADwAAABUAAAATAAAACgAAABYAAAAHAAAACwAAABcAAAAJAAAABwAAAA0AAAAGAAAACQAAAA8AAAAIAAAAFgAAAA0AAAAHAAAAFwAAAA8AAAAJAAAAFgAAABQAAAANAAAAFwAAABUAAAAPAAAACgAAABgAAAAWAAAACwAAABkAAAAXAAAAFgAAABoAAAAUAAAAFwAAABsAAAAVAAAAGAAAABoAAAAWAAAAGQAAABsAAAAXAAAAGAAAABwAAAAaAAAAGQAAAB0AAAAbAAAAAAAAAB8AAAAeAAAAAwAAACEAAAAgAAAAHgAAACMAAAAiAAAAIAAAACUAAAAkAAAAHwAAACMAAAAeAAAAIQAAACUAAAAgAAAAHwAAACYAAAAjAAAAIQAAACcAAAAlAAAAIgAAACkAAAAoAAAAJAAAACsAAAAqAAAAKAAAAC0AAAAsAAAAKgAAAC8AAAAuAAAAKQAAAC0AAAAoAAAAKwAAAC8AAAAqAAAAKQAAADAAAAAtAAAAKwAAADEAAAAvAAAAJgAAADIAAAAjAAAAJwAAADMAAAAlAAAAIwAAACkAAAAiAAAAJQAAACsAAAAkAAAAMgAAACkAAAAjAAAAMwAAACsAAAAlAAAAMgAAADAAAAApAAAAMwAAADEAAAArAAAAJgAAADQAAAAyAAAAJwAAADUAAAAzAAAAMgAAADYAAAAwAAAAMwAAADcAAAAxAAAANAAAADYAAAAyAAAANQAAADcAAAAzAAAANAAAADgAAAA2AAAANQAAADkAAAA3AAAAOgAAADwAAAA7AAAAPQAAAD8AAAA+AAAAOwAAAEEAAABAAAAAPgAAAEMAAABCAAAAPAAAAEEAAAA7AAAAPwAAAEMAAAA+AAAAPAAAAEQAAABBAAAAPwAAAEUAAABDAAAAQAAAAEcAAABGAAAAQgAAAEkAAABIAAAARgAAAEoAAAAcAAAASAAAAEsAAAAdAAAARwAAAEoAAABGAAAASQAAAEsAAABIAAAARwAAAEwAAABKAAAASQAAAE0AAABLAAAARAAAAE4AAABBAAAARQAAAE8AAABDAAAAQQAAAEcAAABAAAAAQwAAAEkAAABCAAAATgAAAEcAAABBAAAATwAAAEkAAABDAAAATgAAAEwAAABHAAAATwAAAE0AAABJAAAARAAAAFAAAABOAAAARQAAAFEAAABPAAAATgAAAFIAAABMAAAATwAAAFMAAABNAAAAUAAAAFIAAABOAAAAUQAAAFMAAABPAAAAUAAAAFQAAABSAAAAUQAAAFUAAABTAAAAOgAAAFcAAABWAAAAPQAAAFkAAABYAAAAVgAAAFsAAABaAAAAWAAAAF0AAABcAAAAVwAAAFsAAABWAAAAWQAAAF0AAABYAAAAVwAAAF4AAABbAAAAWQAAAF8AAABdAAAAWgAAAGEAAABgAAAAXAAAAGMAAABiAAAAYAAAAGUAAABkAAAAYgAAAGcAAABmAAAAYQAAAGUAAABgAAAAYwAAAGcAAABiAAAAYQAAAGgAAABlAAAAYwAAAGkAAABnAAAAXgAAAGoAAABbAAAAXwAAAGsAAABdAAAAWwAAAGEAAABaAAAAXQAAAGMAAABcAAAAagAAAGEAAABbAAAAawAAAGMAAABdAAAAagAAAGgAAABhAAAAawAAAGkAAABjAAAAXgAAAGwAAABqAAAAXwAAAG0AAABrAAAAagAAAG4AAABoAAAAawAAAG8AAABpAAAAbAAAAG4AAABqAAAAbQAAAG8AAABrAAAAbAAAACwAAABuAAAAbQAAAC4AAABvAAAAcAAAAHIAAABxAAAAcwAAAHUAAAB0AAAAcQAAAHcAAAB2AAAAdAAAAHkAAAB4AAAAcgAAAHcAAABxAAAAdQAAAHkAAAB0AAAAcgAAAHoAAAB3AAAAdQAAAHsAAAB5AAAAdgAAAH0AAAB8AAAAeAAAAH8AAAB+AAAAfAAAAIEAAACAAAAAfgAAAIMAAACCAAAAfQAAAIEAAAB8AAAAfwAAAIMAAAB+AAAAfQAAAIQAAACBAAAAfwAAAIUAAACDAAAAegAAAIYAAAB3AAAAewAAAIcAAAB5AAAAdwAAAH0AAAB2AAAAeQAAAH8AAAB4AAAAhgAAAH0AAAB3AAAAhwAAAH8AAAB5AAAAhgAAAIQAAAB9AAAAhwAAAIUAAAB/AAAAegAAAIgAAACGAAAAewAAAIkAAACHAAAAhgAAAIoAAACEAAAAhwAAAIsAAACFAAAAiAAAAIoAAACGAAAAiQAAAIsAAACHAAAAiAAAABAAAACKAAAAiQAAABIAAACLAAAAcAAAAI0AAACMAAAAcwAAAI8AAACOAAAAjAAAAJEAAACQAAAAjgAAAJMAAACSAAAAjQAAAJEAAACMAAAAjwAAAJMAAACOAAAAjQAAAJQAAACRAAAAjwAAAJUAAACTAAAAkAAAAJcAAACWAAAAkgAAAJkAAACYAAAAlgAAAJoAAAA4AAAAmAAAAJsAAAA5AAAAlwAAAJoAAACWAAAAmQAAAJsAAACYAAAAlwAAAJwAAACaAAAAmQAAAJ0AAACbAAAAlAAAAJ4AAACRAAAAlQAAAJ8AAACTAAAAkQAAAJcAAACQAAAAkwAAAJkAAACSAAAAngAAAJcAAACRAAAAnwAAAJkAAACTAAAAngAAAJwAAACXAAAAnwAAAJ0AAACZAAAAlAAAAKAAAACeAAAAlQAAAKEAAACfAAAAngAAAKIAAACcAAAAnwAAAKMAAACdAAAAoAAAAKIAAACeAAAAoQAAAKMAAACfAAAAoAAAAKQAAACiAAAAoQAAAKUAAACjAAAApgAAAKgAAACnAAAAqQAAAKsAAACqAAAApwAAAK0AAACsAAAAqgAAAK8AAACuAAAAqAAAAK0AAACnAAAAqwAAAK8AAACqAAAAqAAAALAAAACtAAAAqwAAALEAAACvAAAArAAAALMAAACyAAAArgAAALUAAAC0AAAAsgAAALYAAABUAAAAtAAAALcAAABVAAAAswAAALYAAACyAAAAtQAAALcAAAC0AAAAswAAALgAAAC2AAAAtQAAALkAAAC3AAAAsAAAALoAAACtAAAAsQAAALsAAACvAAAArQAAALMAAACsAAAArwAAALUAAACuAAAAugAAALMAAACtAAAAuwAAALUAAACvAAAAugAAALgAAACzAAAAuwAAALkAAAC1AAAAsAAAALwAAAC6AAAAsQAAAL0AAAC7AAAAugAAAL4AAAC4AAAAuwAAAL8AAAC5AAAAvAAAAL4AAAC6AAAAvQAAAL8AAAC7AAAAvAAAAIAAAAC+AAAAvQAAAIIAAAC/AAAApgAAAMEAAADAAAAAqQAAAMMAAADCAAAAwAAAAMUAAADEAAAAwgAAAMcAAADGAAAAwQAAAMUAAADAAAAAwwAAAMcAAADCAAAAwQAAAMgAAADFAAAAwwAAAMkAAADHAAAAxAAAAMsAAADKAAAAxgAAAM0AAADMAAAAygAAAM4AAACkAAAAzAAAAM8AAAClAAAAywAAAM4AAADKAAAAzQAAAM8AAADMAAAAywAAANAAAADOAAAAzQAAANEAAADPAAAAyAAAANIAAADFAAAAyQAAANMAAADHAAAAxQAAAMsAAADEAAAAxwAAAM0AAADGAAAA0gAAAMsAAADFAAAA0wAAAM0AAADHAAAA0gAAANAAAADLAAAA0wAAANEAAADNAAAAyAAAANQAAADSAAAAyQAAANUAAADTAAAA0gAAANYAAADQAAAA0wAAANcAAADRAAAA1AAAANYAAADSAAAA1QAAANcAAADTAAAA1AAAAGQAAADWAAAA1QAAAGYAAADXAAAAAAAAAAEAAAAfAAAAAwAAAAQAAAAhAAAAHwAAANgAAAAmAAAAIQAAANkAAAAnAAAAAQAAANgAAAAfAAAABAAAANkAAAAhAAAAAQAAAAYAAADYAAAABAAAAAgAAADZAAAAJgAAANoAAAA0AAAAJwAAANsAAAA1AAAANAAAANwAAAA4AAAANQAAAN0AAAA5AAAA2gAAANwAAAA0AAAA2wAAAN0AAAA1AAAA2gAAAN4AAADcAAAA2wAAAN8AAADdAAAABgAAAOAAAADYAAAACAAAAOEAAADZAAAA2AAAANoAAAAmAAAA2QAAANsAAAAnAAAA4AAAANoAAADYAAAA4QAAANsAAADZAAAA4AAAAN4AAADaAAAA4QAAAN8AAADbAAAABgAAAAwAAADgAAAACAAAAA4AAADhAAAA4AAAAOIAAADeAAAA4QAAAOMAAADfAAAADAAAAOIAAADgAAAADgAAAOMAAADhAAAADAAAABAAAADiAAAADgAAABIAAADjAAAAcAAAAIwAAAByAAAAcwAAAI4AAAB1AAAAcgAAAOQAAAB6AAAAdQAAAOUAAAB7AAAAjAAAAOQAAAByAAAAjgAAAOUAAAB1AAAAjAAAAJAAAADkAAAAjgAAAJIAAADlAAAAegAAAOYAAACIAAAAewAAAOcAAACJAAAAiAAAAOIAAAAQAAAAiQAAAOMAAAASAAAA5gAAAOIAAACIAAAA5wAAAOMAAACJAAAA5gAAAN4AAADiAAAA5wAAAN8AAADjAAAAkAAAAOgAAADkAAAAkgAAAOkAAADlAAAA5AAAAOYAAAB6AAAA5QAAAOcAAAB7AAAA6AAAAOYAAADkAAAA6QAAAOcAAADlAAAA6AAAAN4AAADmAAAA6QAAAN8AAADnAAAAkAAAAJYAAADoAAAAkgAAAJgAAADpAAAA6AAAANwAAADeAAAA6QAAAN0AAADfAAAAlgAAANwAAADoAAAAmAAAAN0AAADpAAAAlgAAADgAAADcAAAAmAAAADkAAADdAAAAOgAAAFYAAAA8AAAAPQAAAFgAAAA/AAAAPAAAAOoAAABEAAAAPwAAAOsAAABFAAAAVgAAAOoAAAA8AAAAWAAAAOsAAAA/AAAAVgAAAFoAAADqAAAAWAAAAFwAAADrAAAARAAAAOwAAABQAAAARQAAAO0AAABRAAAAUAAAAO4AAABUAAAAUQAAAO8AAABVAAAA7AAAAO4AAABQAAAA7QAAAO8AAABRAAAA7AAAAPAAAADuAAAA7QAAAPEAAADvAAAAWgAAAPIAAADqAAAAXAAAAPMAAADrAAAA6gAAAOwAAABEAAAA6wAAAO0AAABFAAAA8gAAAOwAAADqAAAA8wAAAO0AAADrAAAA8gAAAPAAAADsAAAA8wAAAPEAAADtAAAAWgAAAGAAAADyAAAAXAAAAGIAAADzAAAA8gAAAPQAAADwAAAA8wAAAPUAAADxAAAAYAAAAPQAAADyAAAAYgAAAPUAAADzAAAAYAAAAGQAAAD0AAAAYgAAAGYAAAD1AAAApgAAAMEAAACnAAAAqQAAAMMAAACqAAAApwAAAPYAAACsAAAAqgAAAPcAAACuAAAAwQAAAPYAAACnAAAAwwAAAPcAAACqAAAAwQAAAMgAAAD2AAAAwwAAAMkAAAD3AAAArAAAAPgAAACyAAAArgAAAPkAAAC0AAAAsgAAAO4AAABUAAAAtAAAAO8AAABVAAAA+AAAAO4AAACyAAAA+QAAAO8AAAC0AAAA+AAAAPAAAADuAAAA+QAAAPEAAADvAAAAyAAAAPoAAAD2AAAAyQAAAPsAAAD3AAAA9gAAAPgAAACsAAAA9wAAAPkAAACuAAAA+gAAAPgAAAD2AAAA+wAAAPkAAAD3AAAA+gAAAPAAAAD4AAAA+wAAAPEAAAD5AAAAyAAAANQAAAD6AAAAyQAAANUAAAD7AAAA+gAAAPQAAADwAAAA+wAAAPUAAADxAAAA1AAAAPQAAAD6AAAA1QAAAPUAAAD7AAAA1AAAAGQAAAD0AAAA1QAAAGYAAAD1AAAAHAAAABgAAABGAAAAHQAAABkAAABIAAAARgAAAPwAAABAAAAASAAAAP0AAABCAAAAGAAAAPwAAABGAAAAGQAAAP0AAABIAAAAGAAAAAoAAAD8AAAAGQAAAAsAAAD9AAAAQAAAAP4AAAA7AAAAQgAAAP8AAAA+AAAAOwAAAAABAAA6AAAAPgAAAAEBAAA9AAAA/gAAAAABAAA7AAAA/wAAAAEBAAA+AAAA/gAAAAIBAAAAAQAA/wAAAAMBAAABAQAACgAAAAQBAAD8AAAACwAAAAUBAAD9AAAA/AAAAP4AAABAAAAA/QAAAP8AAABCAAAABAEAAP4AAAD8AAAABQEAAP8AAAD9AAAABAEAAAIBAAD+AAAABQEAAAMBAAD/AAAACgAAAAIAAAAEAQAACwAAAAUAAAAFAQAABAEAAAYBAAACAQAABQEAAAcBAAADAQAAAgAAAAYBAAAEAQAABQAAAAcBAAAFAQAAAgAAAAAAAAAGAQAABQAAAAMAAAAHAQAALAAAAGwAAAAoAAAALgAAAG0AAAAqAAAAKAAAAAgBAAAiAAAAKgAAAAkBAAAkAAAAbAAAAAgBAAAoAAAAbQAAAAkBAAAqAAAAbAAAAF4AAAAIAQAAbQAAAF8AAAAJAQAAIgAAAAoBAAAeAAAAJAAAAAsBAAAgAAAAHgAAAAYBAAAAAAAAIAAAAAcBAAADAAAACgEAAAYBAAAeAAAACwEAAAcBAAAgAAAACgEAAAIBAAAGAQAACwEAAAMBAAAHAQAAXgAAAAwBAAAIAQAAXwAAAA0BAAAJAQAACAEAAAoBAAAiAAAACQEAAAsBAAAkAAAADAEAAAoBAAAIAQAADQEAAAsBAAAJAQAADAEAAAIBAAAKAQAADQEAAAMBAAALAQAAXgAAAFcAAAAMAQAAXwAAAFkAAAANAQAADAEAAAABAAACAQAADQEAAAEBAAADAQAAVwAAAAABAAAMAQAAWQAAAAEBAAANAQAAVwAAADoAAAAAAQAAWQAAAD0AAAABAQAAgAAAALwAAAB8AAAAggAAAL0AAAB+AAAAfAAAAA4BAAB2AAAAfgAAAA8BAAB4AAAAvAAAAA4BAAB8AAAAvQAAAA8BAAB+AAAAvAAAALAAAAAOAQAAvQAAALEAAAAPAQAAdgAAABABAABxAAAAeAAAABEBAAB0AAAAcQAAABIBAABwAAAAdAAAABMBAABzAAAAEAEAABIBAABxAAAAEQEAABMBAAB0AAAAEAEAABQBAAASAQAAEQEAABUBAAATAQAAsAAAABYBAAAOAQAAsQAAABcBAAAPAQAADgEAABABAAB2AAAADwEAABEBAAB4AAAAFgEAABABAAAOAQAAFwEAABEBAAAPAQAAFgEAABQBAAAQAQAAFwEAABUBAAARAQAAsAAAAKgAAAAWAQAAsQAAAKsAAAAXAQAAFgEAABgBAAAUAQAAFwEAABkBAAAVAQAAqAAAABgBAAAWAQAAqwAAABkBAAAXAQAAqAAAAKYAAAAYAQAAqwAAAKkAAAAZAQAApAAAAKAAAADKAAAApQAAAKEAAADMAAAAygAAABoBAADEAAAAzAAAABsBAADGAAAAoAAAABoBAADKAAAAoQAAABsBAADMAAAAoAAAAJQAAAAaAQAAoQAAAJUAAAAbAQAAxAAAABwBAADAAAAAxgAAAB0BAADCAAAAwAAAABgBAACmAAAAwgAAABkBAACpAAAAHAEAABgBAADAAAAAHQEAABkBAADCAAAAHAEAABQBAAAYAQAAHQEAABUBAAAZAQAAlAAAAB4BAAAaAQAAlQAAAB8BAAAbAQAAGgEAABwBAADEAAAAGwEAAB0BAADGAAAAHgEAABwBAAAaAQAAHwEAAB0BAAAbAQAAHgEAABQBAAAcAQAAHwEAABUBAAAdAQAAlAAAAI0AAAAeAQAAlQAAAI8AAAAfAQAAHgEAABIBAAAUAQAAHwEAABMBAAAVAQAAjQAAABIBAAAeAQAAjwAAABMBAAAfAQAAjQAAAHAAAAASAQAAjwAAAHMAAAATAQAAEAAAABEAAACKAAAAEgAAABMAAACLAAAAigAAACABAACEAAAAiwAAACEBAACFAAAAEQAAACABAACKAAAAEwAAACEBAACLAAAAEQAAABQAAAAgAQAAEwAAABUAAAAhAQAAhAAAACIBAACBAAAAhQAAACMBAACDAAAAgQAAACQBAACAAAAAgwAAACUBAACCAAAAIgEAACQBAACBAAAAIwEAACUBAACDAAAAIgEAACYBAAAkAQAAIwEAACcBAAAlAQAAFAAAACgBAAAgAQAAFQAAACkBAAAhAQAAIAEAACIBAACEAAAAIQEAACMBAACFAAAAKAEAACIBAAAgAQAAKQEAACMBAAAhAQAAKAEAACYBAAAiAQAAKQEAACcBAAAjAQAAFAAAABoAAAAoAQAAFQAAABsAAAApAQAAKAEAACoBAAAmAQAAKQEAACsBAAAnAQAAGgAAACoBAAAoAQAAGwAAACsBAAApAQAAGgAAABwAAAAqAQAAGwAAAB0AAAArAQAAVAAAALYAAABSAAAAVQAAALcAAABTAAAAUgAAACwBAABMAAAAUwAAAC0BAABNAAAAtgAAACwBAABSAAAAtwAAAC0BAABTAAAAtgAAALgAAAAsAQAAtwAAALkAAAAtAQAATAAAAC4BAABKAAAATQAAAC8BAABLAAAASgAAACoBAAAcAAAASwAAACsBAAAdAAAALgEAACoBAABKAAAALwEAACsBAABLAAAALgEAACYBAAAqAQAALwEAACcBAAArAQAAuAAAADABAAAsAQAAuQAAADEBAAAtAQAALAEAAC4BAABMAAAALQEAAC8BAABNAAAAMAEAAC4BAAAsAQAAMQEAAC8BAAAtAQAAMAEAACYBAAAuAQAAMQEAACcBAAAvAQAAuAAAAL4AAAAwAQAAuQAAAL8AAAAxAQAAMAEAACQBAAAmAQAAMQEAACUBAAAnAQAAvgAAACQBAAAwAQAAvwAAACUBAAAxAQAAvgAAAIAAAAAkAQAAvwAAAIIAAAAlAQAAOAAAAJoAAAA2AAAAOQAAAJsAAAA3AAAANgAAADIBAAAwAAAANwAAADMBAAAxAAAAmgAAADIBAAA2AAAAmwAAADMBAAA3AAAAmgAAAJwAAAAyAQAAmwAAAJ0AAAAzAQAAMAAAADQBAAAtAAAAMQAAADUBAAAvAAAALQAAADYBAAAsAAAALwAAADcBAAAuAAAANAEAADYBAAAtAAAANQEAADcBAAAvAAAANAEAADgBAAA2AQAANQEAADkBAAA3AQAAnAAAADoBAAAyAQAAnQAAADsBAAAzAQAAMgEAADQBAAAwAAAAMwEAADUBAAAxAAAAOgEAADQBAAAyAQAAOwEAADUBAAAzAQAAOgEAADgBAAA0AQAAOwEAADkBAAA1AQAAnAAAAKIAAAA6AQAAnQAAAKMAAAA7AQAAOgEAADwBAAA4AQAAOwEAAD0BAAA5AQAAogAAADwBAAA6AQAAowAAAD0BAAA7AQAAogAAAKQAAAA8AQAAowAAAKUAAAA9AQAAZAAAAGUAAADWAAAAZgAAAGcAAADXAAAA1gAAAD4BAADQAAAA1wAAAD8BAADRAAAAZQAAAD4BAADWAAAAZwAAAD8BAADXAAAAZQAAAGgAAAA+AQAAZwAAAGkAAAA/AQAA0AAAAEABAADOAAAA0QAAAEEBAADPAAAAzgAAADwBAACkAAAAzwAAAD0BAAClAAAAQAEAADwBAADOAAAAQQEAAD0BAADPAAAAQAEAADgBAAA8AQAAQQEAADkBAAA9AQAAaAAAAEIBAAA+AQAAaQAAAEMBAAA/AQAAPgEAAEABAADQAAAAPwEAAEEBAADRAAAAQgEAAEABAAA+AQAAQwEAAEEBAAA/AQAAQgEAADgBAABAAQAAQwEAADkBAABBAQAAaAAAAG4AAABCAQAAaQAAAG8AAABDAQAAQgEAADYBAAA4AQAAQwEAADcBAAA5AQAAbgAAADYBAABCAQAAbwAAADcBAABDAQAAbgAAACwAAAA2AQAAbwAAAC4AAAA3AQAAAAUAAA==BgAAAAwAAAASAAAAGAAAAB4AAAAkAAAAKgAAADAAAAA2AAAAPAAAAEIAAABIAAAATgAAAFQAAABaAAAAYAAAAGYAAABsAAAAcgAAAHgAAAB+AAAAhAAAAIoAAACQAAAAlgAAAJwAAACiAAAAqAAAAK4AAAC0AAAAugAAAMAAAADGAAAAzAAAANIAAADYAAAA3gAAAOQAAADqAAAA8AAAAPYAAAD8AAAAAgEAAAgBAAAOAQAAFAEAABoBAAAgAQAAJgEAACwBAAAyAQAAOAEAAD4BAABEAQAASgEAAFABAABWAQAAXAEAAGIBAABoAQAAbgEAAHQBAAB6AQAAgAEAAIYBAACMAQAAkgEAAJgBAACeAQAApAEAAKoBAACwAQAAtgEAALwBAADCAQAAyAEAAM4BAADUAQAA2gEAAOABAADmAQAA7AEAAPIBAAD4AQAA/gEAAAQCAAAKAgAAEAIAABYCAAAcAgAAIgIAACgCAAAuAgAANAIAADoCAABAAgAARgIAAEwCAABSAgAAWAIAAF4CAABkAgAAagIAAHACAAB2AgAAfAIAAIICAACIAgAAjgIAAJQCAACaAgAAoAIAAKYCAACsAgAAsgIAALgCAAC+AgAAxAIAAMoCAADQAgAA1gIAANwCAADiAgAA6AIAAO4CAAD0AgAA+gIAAAADAAAGAwAADAMAABIDAAAYAwAAHgMAACQDAAAqAwAAMAMAADYDAAA8AwAAQgMAAEgDAABOAwAAVAMAAFoDAABgAwAAZgMAAGwDAAByAwAAeAMAAH4DAACEAwAAigMAAJADAACWAwAAnAMAAKIDAACoAwAArgMAALQDAAC6AwAAwAMAAMYDAADMAwAA0gMAANgDAADeAwAA5AMAAOoDAADwAwAA9gMAAPwDAAACBAAACAQAAA4EAAAUBAAAGgQAACAEAAAmBAAALAQAADIEAAA4BAAAPgQAAEQEAABKBAAAUAQAAFYEAABcBAAAYgQAAGgEAABuBAAAdAQAAHoEAACABAAAhgQAAIwEAACSBAAAmAQAAJ4EAACkBAAAqgQAALAEAAC2BAAAvAQAAMIEAADIBAAAzgQAANQEAADaBAAA4AQAAOYEAADsBAAA8gQAAPgEAAD+BAAABAUAAAoFAAAQBQAAFgUAABwFAAAiBQAAKAUAAC4FAAA0BQAAOgUAAEAFAABGBQAATAUAAFIFAABYBQAAXgUAAGQFAABqBQAAcAUAAHYFAAB8BQAAggUAAIgFAACOBQAAlAUAAJoFAACgBQAApgUAAKwFAACyBQAAuAUAAL4FAADEBQAAygUAANAFAADWBQAA3AUAAOIFAADoBQAA7gUAAPQFAAD6BQAAAAYAAAYGAAAMBgAAEgYAABgGAAAeBgAAJAYAACoGAAAwBgAANgYAADwGAABCBgAASAYAAE4GAABUBgAAWgYAAGAGAABmBgAAbAYAAHIGAAB4BgAAfgYAAIQGAACKBgAAkAYAAJYGAACcBgAAogYAAKgGAACuBgAAtAYAALoGAADABgAAxgYAAMwGAADSBgAA2AYAAN4GAADkBgAA6gYAAPAGAAD2BgAA/AYAAAIHAAAIBwAADgcAABQHAAAaBwAAIAcAACYHAAAsBwAAMgcAADgHAAA+BwAARAcAAEoHAABQBwAAVgcAAFwHAABiBwAAaAcAAG4HAAB0BwAAegcAAIAHAAA=QAEAAA==DQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0=
>   </AppendedData>
> </VTKFile>

> _______________________________________________
> Dune mailing list
> Dune at dune-project.org
> http://lists.dune-project.org/mailman/listinfo/dune


-- 
Prof. Dr. Christian Engwer 
Institut für Numerische und Angewandte Mathematik
Fachbereich Mathematik und Informatik der Universität Münster
Einsteinstrasse 62
48149 Münster

E-Mail	christian.engwer at uni-muenster.de
Telefon	+49 251 83-35067
FAX		+49 251 83-32729




More information about the Dune mailing list