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Preface

I never expected to write a methods book.

I was approached to write one late in 1992. By then, however, all the
really influential methods books had been published, and I didn't
think I had anything significant to add to the literature. As far as I was
concerned, the ground was covered—there were better things to do. I
had decided not to create a new methodology that was “fowler” than
all the others, and there were already too many methodologies.

When Grady Booch, Jim Rumbaugh, and Ivar Jacobson (the “three
amigos”) joined forces to form a single Unified Modeling Language
(UML), I was delighted. Arguments over which method to choose are
some of the most tiresome arguments I’ve had to deal with, particu-
larly since they have little impact on the final result. I was glad to see
that argument go away.

When I was approached to write this book, the amigos were beginning
to write their books; these books will be the authoritative works on the
UML. However, there is a need for a short book to both provide some-
thing while the three of them are working on their larger works and
act as a concise UML guide. I intended to make this volume the short-
est methods book ever written.

Although this is a noble aim for me, is this the right book for you?

I’ll start by telling you what this book is not.

• It is not a tutorial on OO analysis and design with the UML. The
user’s guide, led by Grady Booch, will be that book.

• It is not a definitive reference guide to the notation and its seman-
tics. The reference guide, led by Jim Rumbaugh, will be that book.

• It is not a detailed guide to the process of using the UML on object-
oriented projects. The process guide, led by Ivar Jacobson, will be
that book.
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This book is a short guide to the key parts of the notation, the seman-
tics, and the process. I am aiming it at those who already have used
object technology, probably with one of the many currently available
OO analysis and design methods. This book tells you quickly what the
key elements of the notation are and what they mean, and it suggests
an outline process for using them. I’ve also taken the opportunity to
add tips and suggestions from my use of object methods over the last
decade.

Because it is a short book, it will be easier to digest the information and
get used to what the UML has to say. It also will provide a good first
place to look for reference information.

Chapter 1 looks at what the UML is, the history of its development,
and the reasons why you might want to use it.

Chapter 2 discusses the object-oriented development process. Al-
though the UML exists independent of process, I find it hard to discuss
modeling techniques without talking about where they fit in with
object-oriented development.

Chapters 3 through 10 discuss the various modeling techniques of the
UML, in turn. I have organized these chapters around the kinds of dia-
grams I find useful. I describe the notation, including its semantics,
and provide tips about using the techniques. My philosophy is to
make clear what the UML says and, at the same time, give you my
opinions on how best to use it.

Chapter 11 gives a small example to show how the UML fits in with
programming using (of course) Java.

The inside covers summarize the UML notation. You may find it use-
ful to refer to these as you are reading the chapters so that you can
check on the notation for the various modeling concepts.

Scattered within the “official UML” chapters are a number of sidebars
on other techniques I have found valuable but which are not empha-
sized in the UML. They certainly can and should be used with the
UML.
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For each UML and non-UML technique, I’ve provided summaries
about when to use the technique and where to find more information.
As I write this, there are no UML books on the market, so I have refer-
enced only pre-UML books. Although the notation is different, many
of the concepts are the same, and it will be a while before these books
should be relegated to the basement.

Of course, this book, like any book written within our industry, will be
out of date as soon as it is finished. To combat this, I’m making the
inevitable use of the World Wide Web. To get my latest thoughts on
methods, take a look at the Web site for this book: <www.awl.com/
cseng/titles/0-201-32563-2>.
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Foreword

 

When we began to craft the Unified Modeling Language, we hoped
that we could produce a standard means of expressing design that
would not only reflect the best practices of industry, but would also
help demystify the process of software system modeling. We believe
that the availability of a standard modeling language will encourage
more developers to model their software systems before building
them. The benefits of doing so are well-known to the developer com-
munity.

The creation of the UML was itself an iterative and incremental pro-
cess very similar to the modeling of a large software system. The end
result is a standard built on, and reflective of, the many ideas and con-
tributions made by numerous individuals and companies from the
object community. We began the UML effort, but many others helped
bring it to a successful conclusion; we are grateful for their assistance.

Creating and agreeing on a standard modeling language is a signifi-
cant challenge by itself. Educating the development community, and
presenting the UML in a manner that is both accessible and in the con-
text of the software development process, is also a significant chal-
lenge. In this deceptively short book, Martin Fowler has more than
met this challenge.

In a clear and friendly style, Martin not only introduces the key
aspects of UML, but also clearly demonstrates the role UML plays in
the development process. Along the way, we are treated to abundant
nuggets of modeling insight and wisdom drawn from Martin's 10-plus
years of design and modeling experience.

The result is a book we recommend to modelers and developers inter-
ested in getting a first look at UML and in gaining a perspective on the
key role it plays in the development process.

Grady Booch
Ivar Jacobson
James Rumbaugh



             
Chapter 1

Introduction

What Is the UML?

The Unified Modeling Language (UML) is the successor to the wave
of object-oriented analysis and design (OOA&D) methods that
appeared in the late ‘80s and early ‘90s. It most directly unifies the
methods of Booch, Rumbaugh (OMT), and Jacobson, but its reach will
be wider than that. As I write this, the UML is in the middle of a stan-
dardization process with the OMG (Object Management Group), and I
expect it to be the standard modeling language in the future.

The UML is called a modeling language, not a method. Most methods
consist, at least in principle, of both a modeling language and a pro-
cess. The modeling language is the (mainly graphical) notation that
methods use to express designs. The process is their advice on what
steps to take in doing a design.

The process parts of many methods books are rather sketchy. Further-
more, I find that most people, when they say they are using a method,
use the modeling language, but rarely follow the process. So in many
ways, the modeling language is the most important part of the
method. It is certainly the key part for communication. If you want to
discuss your design with someone, it is the modeling language that
both of you need to understand, not the process you used to get to that
design.
1
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The three amigos are also working on a unified process, which they are
going to call the Rational Unified Process. You don’t have to use the
Rational Unified Process in order to use the UML—they are distinctly
separate. In this book, however, I talk a little bit about process in order
to put the techniques of the modeling language in context. Within this
discussion, I use the basic steps and terms of the Rational Unified Pro-
cess, but the text is not a description of the the Rational Unified Pro-
cess. I find that I use many different processes, depending on my client
and on the kind of software I am building. While I think a standard
modeling language is valuable, I don’t see a comparable need for a
standard process, although some harmonization on vocabulary would
be useful.

How We Got Here

In the 1980s, objects began to move away from the research labs and
took their first steps toward the “real” world. Smalltalk stabilized into
a platform that people could use, and C++ was born.

Like many developments in software, objects were driven by program-
ming languages. Many people wondered how design methods would
fit into an object-oriented world. Design methods had become very
popular in industrial development in the ‘70s and ‘80s. Many felt that
techniques to help people do good analysis and design were just as
important to object-oriented development. 

The key books about object-oriented analysis and design methods
appeared between 1988 and 1992:

• Sally Shlaer and Steve Mellor wrote a pair of books (1989 and 1991)
on analysis and design; the material in these books has evolved
into their Recursive Design approach (1997).

• Peter Coad and Ed Yourdon also wrote books that developed
Coad's lightweight and prototype-oriented approach to methods.
See Coad and Yourdon (1991a and 1991b), Coad and Nicola (1993),
and Coad et al. (1995).
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• The Smalltalk community in Portland, Oregon, came up with
Responsibility-Driven Design (Wirfs-Brock et al. 1990) and Class-
Responsibility-Collaboration (CRC) cards (Beck and Cunningham
1989).

• Grady Booch had done a lot of work with Rational Software in
developing Ada systems. His books featured several examples
(and the best cartoons in the world of methods books). See Booch
(1994 and 1995).

• Jim Rumbaugh led a team at the research labs at General Electric,
which came out with a very popular book about a method called
Object Modeling Technique (OMT). See Rumbaugh et al. (1991) and
Rumbaugh (1996).

• Jim Odell based his books (written with James Martin) on his long
experience with business information systems and Information
Engineering. The result was the most conceptual of these books.
See Martin and Odell (1994 and 1996).

• Ivar Jacobson built his books on his experience with telephone
switches for Ericsson and introduced the concept of use cases in
the first one. See Jacobson (1994 and 1995).

As I prepared to travel to Portland for OOPSLA ’94, the methods scene
was pretty split and competitive. Each of the aforementioned authors
was now informally leading a group of practitioners who liked his
ideas. All of these methods were very similar, yet they contained a
number of often annoying minor differences among them. The same
basic concepts would appear in very different notations, which caused
confusion to my clients.

Talk of standardization had surfaced, but nobody seemed willing to
do anything about it. Some were opposed to the very idea of standards
for methods. Others liked the idea but were not willing to put in any
effort. A team from the OMG tried to look at standardization but got
only an open letter of protest from all the key methodologists. Grady
Booch tried an informal morning coffee approach, with no more suc-
cess. (This reminds me of an old joke. Question: What is the difference
between a methodologist and a terrorist? Answer: You can negotiate
with a terrorist.)
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For the OO methods community, the big news at OOPSLA ‘94 was that
Jim Rumbaugh had left General Electric to join Grady Booch at Ratio-
nal Software, with the intention of merging their methods.

The next year was full of amusements.

Grady and Jim proclaimed that “the methods war is over—we won,”
basically declaring that they were going to achieve standardization the
Microsoft way. A number of other methodologists suggested forming
an Anti-Booch Coalition.

By OOPSLA ‘95, Grady and Jim had prepared their first public
description of their merged method: version 0.8 of the Unified Method
documentation. Even more significantly, they announced that Rational
Software had bought Objectory, and that Ivar Jacobson would be join-
ing the Unified team. Rational held a party to celebrate the release of
the 0.8 draft that was very well-attended. It was also quite a lot of fun,
despite Jim Rumbaugh’s singing.

During 1996, Grady, Jim, and Ivar, now widely referred to as the three
amigos, worked on their method, under its new name: the Unified
Modeling Language (UML). However, the other major players in the
object methods community were not inclined to let the UML be the last
word.

An OMG task force was formed to do standardization in the methods
area. This represented a much more serious attempt to address the
issues than previous OMG efforts in the methods area. Mary Loomis
was given the chair; later Jim Odell joined as co-chair and took over
leadership of the effort. Odell made it clear that he was prepared to
give up his method to a standard, but he did not want a Rational-
imposed standard.

In January 1997, various organizations submitted proposals for a
methods standard to facilitate the interchange of models. These pro-
posals focus on a meta-model and an optional notation. Rational
released version 1.0 of the UML documentation as their proposal to
the OMG. 

As I write this, Jim Odell and the OMG group have spent a lot of time
working on the semantics of the UML and harmonizing the various
submissions. We now have a single UML 1.1 proposal with wide
industry support. 
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Notations and Meta-Models

The UML, in its current state, defines a notation and a meta-model.

The notation is the graphical stuff you see in models; it is the syntax of
the modeling language. For instance, class diagram notation defines
how items and concepts such as class, association, and multiplicity are
represented.

Of course, this leads to the question of what exactly is meant by an
association or multiplicity or even a class. Common usage suggests
some informal definitions, but many people want more rigor than that.

The idea of rigorous specification and design languages is most preva-
lent in the field of formal methods. In such techniques, designs and
specifications are represented using some derivative of predicate cal-
culus. Such definitions are mathematically rigorous and allow no
ambiguity. However, the value of these definitions is by no means uni-
versal. Even if you can prove that a program satisfies a mathematical
specification, there is no way to prove that the mathematical specifica-
tion actually meets the real requirements of the system.

Design is all about seeing the key issues in the development. Formal
methods often lead to getting bogged down in lots of minor details.
Also, formal methods are hard to understand and manipulate, often
harder to deal with than programming languages. And you can’t even
execute them.

Most OO methods have very little rigor; their notation appeals to intu-
ition rather than formal definition. On the whole, this does not seem to
have done much harm. These methods may be informal, but many
people still find them useful—and it is usefulness that counts.

However, OO methods people are looking for ways to improve the
rigor of methods without sacrificing their usefulness. One way to do
this is to define a meta-model: a diagram, usually a class diagram, that
defines the notation.

Figure 1-1 is a small piece of the UML 1.1 meta-model that shows the
relationship among associations and generalization. (The extract is
there just to give you a flavor of what meta-models are like. I’m not
even going to try to explain it.)
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Figure 1-1: UML 1.1 Meta-Model Extract

How much does the meta-model affect the user of the modeling nota-
tion? Well, it does help define what is a well-formed model—that is,
one that is syntactically correct. As such, a methods power user should
understand the meta-model. However, most users of methods do not
need such deep understanding to get some value out of using the
UML notation.

This is why I was able write a useful book before the UML meta-model
was completely defined. The changes in the meta-model between 1.0
and 1.1 did not cause any major changes to the contents of this book. I
will not be rigorous in this book; rather, I will follow the traditional
methods path and appeal to your intuition. 

How strictly should you stick to the modeling language? That
depends on the purpose for which you are using it. If you have a
CASE tool that generates code, then you have to stick to the CASE
tool’s interpretation of the modeling language in order to get accept-
able code. If you are using the diagrams for communication purposes,
then you have a little more leeway.
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If you stray from the official notation, then other developers will not
fully understand what you are saying. However, there are times when
the official notation can get in the way of your needs. I’ll admit that in
these cases, I’m not at all afraid to bend the language. I believe that the
language should bend to help me communicate, rather than the other
way around. But I don’t do it often, and I’m always aware that a bend
is a bad thing if it causes communication problems. In this book, I
mention those places where I’m inclined to do a bit of bending.

Why Do Analysis and Design?

When it comes down to it, the real point of software development is
cutting code. Diagrams are, after all, just pretty pictures. No user is
going to thank you for pretty pictures; what a user wants is software
that executes.

So when you are considering using the UML, it is important to ask
yourself why you are doing it and how it will help you when it comes
down to writing the code. There’s no proper empirical evidence to
prove that these techniques are good or bad, but the following subsec-
tions discuss the reasons that I often come across for using them.

Learning OO

A lot of people talk about the learning curve associated with OO—the
infamous paradigm shift. In some ways, the switch to OO is easy. In
other ways, there are a number of obstacles to working with objects,
particularly in using them to their best advantage.

It’s not that it’s difficult to learn how to program in an OO language.
The problem is that it takes a while to learn to exploit the advantages
that object languages provide. Tom Hadfield puts it well: Object lan-
guages allow advantages but don’t provide them. To use these advan-
tages, you have to make the infamous paradigm shift. (Just make sure
you are sitting down at the time!)
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The techniques in the UML were to some degree designed to help peo-
ple do good OO, but different techniques have different advantages.

• One of the most valuable techniques for learning OO is CRC cards
(see page 64), which are not part of the official UML (although they
can and should be used with it). They were designed primarily for
teaching people to work with objects. As such, they are deliber-
ately different from traditional design techniques. Their emphasis
on responsibilities and their lack of complex notation make them
particularly valuable.

• Interaction diagrams (see Chapter 6) are very useful because they
make the message structure very explicit and, thus, are useful for
highlighting over-centralized designs, in which one object is doing
all the work.

• Class diagrams (see Chapters 4 and 5), used to illustrate class mod-
els, are both good and bad for learning objects. Class models are
comfortably similar to data models; many of the principles that
make for a good data model also make for a good class model. The
major problem in using class diagrams is that it is easy to develop
a class model that is data-oriented rather than being responsibility-
oriented. 

• The concept of patterns (see page 36) has become vital to learning
OO because using patterns gets you to concentrate on good OO
designs and to learn by following an example. Once you have got-
ten the hang of some basic modeling techniques, such as simple
class diagrams and interaction diagrams, it is time to start looking
at patterns.

• Another important technique is iterative development (see Chap-
ter 2). This technique does not help you learn OO in any direct
way, but it is the key to exploiting OO effectively. If you do itera-
tive development from the start, then you will learn, in context, the
right kind of process and begin to see why designers suggest doing
things the way they do. 

When you start using a technique, you tend to do it by the book. My
recommendation is to begin with the simple notations that I talk about
here, particularly with class diagrams. As you get comfortable, you
can pick up the more advanced ideas as you need them. You may also
find you wish to extend the method.
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The UML has an extension mechanism that uses stereotypes. I talk
about stereotypes only in the context of class diagrams, but you can
use stereotypes with any diagram to extend its meaning. The three
amigos’ books will go into more detail on that. Just make sure you
really understand what the construct means. Toward that end, I like to
look at any construct from three perspectives: conceptual, specifica-
tion, and implementation (see Chapter 4).

Communicating with Domain Experts

One of our biggest challenges in development is that of building the
right system—one that meets users’ needs at a reasonable cost. This is
made more difficult because we, with our jargon, have to communi-
cate with users, who have their own, more arcane, jargon. (I did a lot of
work in health care, and there the jargon isn't even in English!) Achiev-
ing good communication, along with good understanding of the users’
world, is the key to developing good software.

The obvious technique to use in addressing this is use cases (see Chap-
ter 3). A use case is a snapshot of one aspect of your system. The sum
of all use cases is the external picture of your system, which goes a
long way toward explaining what the system will do.

A good collection of use cases is central to understanding what your
users want. Use cases also present a good vehicle for project planning,
because they control iterative development, which is itself a valuable
technique since it gives regular feedback to the users about where the
software is going.

While use cases help with communication about surface things, it is
also crucial to look at the deeper things. This involves learning how
your domain experts understand their world.

Class diagrams (see Chapters 4 and 5) can be extremely valuable here,
as long as you use them in a conceptual manner. In other words, you
should treat each class as a concept in a user’s mind, part of his or her
language. The class diagrams you draw are then not diagrams of data
or of classes, but diagrams of the language of your users. James Martin
and Jim Odell's “foundations” book (1994) is a good source for this
kind of thinking with class diagrams.
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I have found activity diagrams (see Chapter 9) to be very useful in
cases in which workflow processes are an important part of the users’
world. Since activity diagrams support parallel processes, they can
help you get away from unnecessary sequences. The way these dia-
grams de-emphasize the links to classes, which can be a problem in
later design, becomes an advantage during this more conceptual stage
of the development process.

Understanding the Big Picture

As a consultant, I often have to breeze into a complex project and look
intelligent in a very short period of time. I find the design techniques I
discuss above invaluable for that because they help me acquire an
overall view of the system. A look at a class diagram can quickly tell
me what kinds of abstractions are present in the system and where the
questionable parts are that need further work. As I probe deeper, I
want to see how classes collaborate, so I ask to see interaction dia-
grams that illustrate key behaviors in the system. 

If this is useful to me as an outsider, it is just as useful to the regular
project team. It’s easy to lose sight of the forest for the trees on a large
project. With a few choice diagrams in hand, you can find your way
around the software much more easily.

To build a road map, use package diagrams (see Chapter 7) at the
higher levels to scope out a class diagram. When you draw a class dia-
gram for a road map, take a specification perspective. It is very impor-
tant to hide implementations with this kind of work. Don’t document
every interaction; instead, focus on the key ones.

Use patterns (see page 36) to describe the key ideas in the system; they
help you to explain why your design is the way it is. It is also useful to
describe designs you have rejected and why you rejected them. I
always end up forgetting that kind of decision.

Looking for More Information

This book is not a complete and definitive reference to the UML, let
alone OO analysis and design. There are a lot of words out there and a
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lot of worthwhile things to read. As I discuss the individual topics, I
will talk about other books you should go to for more in-depth infor-
mation on the ideas in the UML and on OOA&D in general.

Of course, your first step beyond this book should be the three amigos’
books on the UML. As I write this, they are planning three books, each
of which will be led by one of the three.

Grady Booch is leading the work on the user’s guide. This will be a
tutorial book that will contain a number of in-depth case studies on
how to use the UML on practical problems. It will go into more detail
than this book and give more advice on how to use the UML well.

Jim Rumbaugh is leading the effort on the reference book, the defini-
tive guide to the UML's notation and meta-model. It will be the final
source of information about what the UML means when it says some-
thing.

Ivar Jacobson is working on a book that will describe the process of
using the UML. Strictly speaking, the UML is a modeling language
and does not contain anything about the process you use to develop
software. That is why the amigos use the term “modeling language”
and not “method,” since a method should properly include a process. I
have outlined a lightweight process in this book to give the techniques
and the notation some context. Jacobson’s book will go into more
detail. 

Of course, the three amigos’ books are not the only books you should
read to learn about good OOA&D. My list of recommended books
changes frequently; take a look at the Survey of Analysis and Design
Methods page at my Web site for the most current version, reachable
from <ourworld.compuserve.com/homepages/Martin_Fowler> (my
home page).

If you are new to objects, I recommend my current favorite introduc-
tory book, Larman (1998). He has a strong responsibility-driven
approach to design that is worth following. If you want to know more
about objects from a conceptual point of view, Martin and Odell (1998)
is now available in a UML edition. Real-time developers should get a
copy of Douglass (1998).
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In particular, I suggest reading books on patterns for material that will
take you beyond the basics. Now that the methods war is over, I think
that patterns will be where most of the interesting material about anal-
ysis and design will appear. Inevitably, however, people will come up
with new analysis and design techniques, and it is likely that they will
talk about how these techniques can be used with the UML. This is
another benefit of the UML; it encourages people to add new tech-
niques without duplicating work that everyone else has done.



Chapter 2

An Outline 
Development 
Process

The UML is a modeling language, not a method. The UML has no
notion of process, which is an important part of a method.

The three amigos have developed a merged process  called the Rational
Unified Process. (It used to be called Objectory.) I don’t believe you can
have a single process for software development. Various factors associ-
ated with software development lead you to different kinds of process.
These factors include the kind of software you are developing (real-
time, information system, desktop product), the scale (single devel-
oper, small team, 100-plus-member team), and so forth. So, the amigos
are trying to come up with a process framework, something that will
capture the common elements but still give people the latitude to use
techniques that are appropriate for their project.

The title of this book is UML Distilled, so I could have safely ignored
process. However, I don’t believe that modeling techniques make any
sense without knowing how they fit into a process.
13
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I think it’s important to discuss the process first so that you can see
how an object-oriented development works. I won’t go into great
detail on the process; I will provide just enough to give you a sense of
the typical way in which a project that uses these techniques is run.

As I discuss the outline process, I will use the terminology and outline
framework of the Rational Unified Process. (I have to use something,
and that seems as good as anything.) I have not tried to describe the
Rational Unified Process; that is beyond the scope of this book. Rather,
I’m describing a lightweight, low-ceremony process that is consistent
with Rational’s process. For full details on the Rational Unified Pro-
cess, you should go to the amigos’ process book.

Although the Rational Unified Process process contains details about
what kinds of models to develop at the various stages in the process, I
won’t go into such details. Nor will I specify tasks, deliverables, and
roles. My terminology is looser than that of the Rational Unified Pro-
cess—that is the price one pays for lightweight description.

Whatever process discussion there is, don’t forget that you can use any
process with the UML. The UML is independent of process. You
should pick something that is appropriate for your kind of project.
Whatever process you use, you can use the UML to record the result-
ing analysis and design decisions.

Overview of the Process

Figure 2-1 shows the high-level view of the development process.

 

Figure 2-1: Outline Development Process
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This process is an iterative and incremental development process, in
that the software is not released in one big bang at the end of the
project but is, instead, developed and released in pieces. The construc-
tion phase consists of many iterations, in which each iteration builds
production-quality software, tested and integrated, that satisfies a sub-
set of the requirements of the project. The delivery may be external, to
early users, or purely internal. Each iteration contains all the usual life-
cycle phases of analysis, design, implementation, and testing.

In principle, you can start at the beginning: Pick some functionality
and build it, pick some other functionality, and so forth. However, it is
worthwhile to spend some time planning.

The first two phases are inception and elaboration. During inception,
you establish the business rationale for the project and decide on the
scope of the project. This is where you get the commitment from the
project sponsor to go further. In elaboration, you collect more detailed
requirements, do high-level analysis and design to establish a baseline
architecture, and create the plan for construction.

Even with this kind of iterative process, there is some work that has to
be left to the end, in the transition phase. This can include beta testing,
performance tuning, and user training.

Projects vary in how much ceremony they have. High-ceremony
projects have a lot of formal paper deliverables, formal meetings, for-
mal sign-offs. Low-ceremony projects might have an inception phase
that consists of an hour's chat with the project’s sponsor and a plan
that sits on a spreadsheet. Naturally, the bigger the project, the more
ceremony you need. The fundamentals of the phases still occur, but in
very different ways.

I try to keep the ceremony to a minimum, and my discussion reflects
that. There will be plenty of high-ceremony processes to choose from
elsewhere.

I’ve shown iterations in the construction phase, but not in the other
phases. In fact, you can have iterations in all phases, and it is often a
good idea to do so in a large phase. Construction is the key phase in
which to iterate, however.
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That's the high-level view. Now we will delve into the details so that
we have enough information to see where the techniques discussed
later in the book fit into the larger scheme of things. In doing this, I
will talk a bit about these techniques and when to use them. You may
find it a little confusing if you are unfamiliar with the techniques. If
that’s the case, skip those bits and come back to them later.

Inception

Inception can take many forms. For some projects, it’s a chat at the cof-
fee machine: “Have a look at putting our catalog of services on the
Web.” For bigger projects, it might be a full-fledged feasibility study
that takes months.

During the inception phase, you work out the business case for the
project—roughly how much it will cost and how much it will bring in.
You will also need to get a sense of the project’s scope. You may need
to do some initial analysis to get a sense of the size of the project.

I don’t tend to make a big deal of inception. Inception should be a few
days’ work to consider if it is worth doing a few months’ worth of
deeper investigation during elaboration (see below). At this point, the
project’s sponsor agrees to no more than a serious look at the project.

Elaboration

So you have the go-ahead to start a project. At this stage, typically, you
have only a vague idea of the requirements. For instance, you might be
able to say:

We are going to build the next-generation customer support
system for the Watts Galore Utility Company. We intend to
use object-oriented technology to build a more flexible system
that is more customer-oriented—specifically, one that will
support consolidated customer bills.

Of course, your requirements document will likely be more expansive
than that, but it may not actually say very much more.
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At this point, you want to get a better understanding of the problem.

• What is it you are actually going to build?
• How are you going to build it?
• What technology are you going to use?

In deciding what issues to look into during this phase, you need to be
driven, first and foremost, by the risks in your project. What are the
things that could derail you? The bigger the risk, the more attention
you have to pay to it.

In my experience, risks can usefully be classified into four categories:

1. Requirements risks. What are the requirements of the system? The
big danger is that you will build the wrong system, one that does
not do what the customer wants it to do. During the elaboration
phase, you need to get a good handle on the requirements and
their relative priorities.

2. Technological risks. What are the technological risks you have to
face? Ask yourself these questions.

a. You are going to use objects. Have you much experience doing
OO design work?

b. You have been told to use Java and the Web. How well does this
technology work? Can you actually deliver the functions that
users need through a Web browser connected to a database?

3. Skills risks. Can you get the staff and expertise you need?
4. Political risks. Are there political forces that can get in the way and

seriously affect your project?

There may be more in your case, but risks that fall into these four cate-
gories are nearly always present.

Dealing with Requirements Risks

Requirements are important and are where UML techniques can most
obviously be brought to bear. The starting point is use cases. Use cases
drive the whole development process.

Use cases are discussed in detail in Chapter 3; I will just give you a
brief description here of what use cases are.
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A use case is a typical interaction that a user has with the system in
order to achieve some goal. Imagine the word processor that I am cur-
rently using. One use case would be “make selected text bold”;
another would be “create an index for a document.”

As you can see from these examples, use cases can vary considerably
in size. The key is that each one indicates a function that the user can
understand and that has value for that user. A developer can respond
with specifics.

It will take me two months to do the index function for you. I
also have a use case to support grammar checking. I have
time to do only one—which would you like first? If you want
bold text, I can do that in a week, and I can do italics at the
same time.

Use cases provide the basis of communication between sponsors and
developers in planning the project.

One of the most important things to do in the elaboration phase is to
discover all the potential use cases for the system you are building. In
practice, of course, you aren’t going to get all of them. You want to get
most, however, particularly the most important ones. It’s for this rea-
son that, during the elaboration phase, you should schedule inter-
views with users for the purpose of gathering use cases.

Use cases do not need to be detailed. I usually find a paragraph or
three of descriptive text is sufficient. This text should be specific
enough for the users to understand the basic idea and for the develop-
ers to have a broad sense of what lurks inside.

Use cases are not the whole picture, however. Another important task
is to come up with the skeleton of a conceptual model of the domain.
Within the heads of one or more users lies a picture of how the busi-
ness operates. For instance:

Our customers may have several sites, and we provide sev-
eral services to these sites. At the moment, a customer gets a
bill for all services at a given site. We want that customer to
be billed for all services at all sites. We call this consolidated
billing.
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This passage contains the words “customer,” “site,” and “service.”
What do these terms mean? How do they fit together? A conceptual
domain model starts to answer these questions and, at the same time,
lays the foundation for the object model that will be used to represent
the objects in the system later in the process. I use the term domain
model to describe any model whose primary subject is the world that
the computer system is supporting, whatever stage of the develop-
ment process you are in.

In the Rational Unified Process, you use different models to capture
different aspects of development. Domain models and use cases cap-
ture functional requirements; analysis models explore the implications
of these requirements for a particular application; design models add
the internal infrastructure to make the application work. The Rational
Unified Process’s domain model is mostly built before you find any
use cases; its purpose is to explore the vocabulary of the domain in
terms that are meaningful to the domain experts. 

After you have a domain model and a use case model, you develop a
design model that realizes both the information in the domain objects
and the behavior in the use cases. The design model adds classes to
actually do the work and also to provide a reusable architecture for
future extensions. In larger projects, you may develop an intermediate
analysis model to explore the consequences of the external require-
ments before making design decisions.

The Rational Unified Process does not require you to construct the
entire system in a “waterfall” manner. It is important to get the key
domain classes and key use cases correct and then to build a reusable
system architecture that will support future extensions. Then, addi-
tional uses cases can be added incrementally, and they can be imple-
mented in the design model as part of an iterative development
process. The whole system should not be built in one “big bang.”

I find two UML techniques particularly valuable in building domain
models.

• Class diagrams, when drawn from a conceptual perspective (see
Chapter 4), are great for capturing the language of the business.
You can use these diagrams to lay out the concepts that the busi-
ness experts use as they think about the business and to lay out the
ways those experts link concepts together.
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• Activity diagrams (see Chapter 9) complement class diagrams by
describing the workflow of the business—that is, the steps people
go through in doing their jobs. The key aspect of activity diagrams
is that they encourage finding parallel processes, which is impor-
tant in eliminating unnecessary sequences in business processes.

Some people like to use interaction diagrams (see Chapter 6) to
explore how various roles interact in the business. By thinking about
workers and activities together, they find it easier to gain an under-
standing of the process. I prefer to use activity diagrams to figure out
what needs to be done first and to address who does what later.

Interaction diagrams are more useful during that later step. Also,
interaction diagrams don’t encourage parallel processes in the way
activity diagrams do. You can use activity diagrams with swimlanes to
deal with both people and parallelism, but it does make the diagrams
more complicated. (You can also use state diagrams [see Chapter 8] in
conjunction with workflow, but I find them more awkward to use in
that context.)

Domain modeling can be a great adjunct to use cases. When I gather
use cases, I like to bring in a domain expert and explore how that per-
son thinks about the business, with the help of conceptual class dia-
grams and activity diagrams.

In this situation, I use minimal notation, I don’t worry about rigor, and
I make lots of informational notes on the diagram. I don’t try to cap-
ture every detail. Instead, I focus on important issues and areas that
imply risk. I draw lots of unconnected diagrams without worrying
about consistency and interrelationships among diagrams.

I find that this process can quickly yield a lot of understanding. Armed
with this understanding, I find that I can more easily identify the use
cases for the different users.

After I’ve covered most of the relevant areas, I like to consolidate the
different diagrams into a single consistent domain model. For this, I
use one or two domain experts who like to get deeper into the model-
ing. I maintain a conceptual perspective but, at the same time, become
more rigorous.

I try to develop a single domain model that will support all the
requirements expressed in the earlier discrete models. This model can



ELABORATION 21
then act as a starting point for building classes and a deeper class
design in the construction phase. If this model is large, I use packages
to divide the model into chunks. I’ll do consolidation for class and
activity diagrams and perhaps draw a couple of state diagrams for
classes that have interesting lifecycles.

You should think of the initial domain model as a skeleton, not as a
high-level model. The term “high-level model” implies that a lot of
details are missing. I have seen this mistake made in several situations,
expressed as, for instance, “Don’t show attributes on these models.”
The results are models with no substance. It’s easy to see why develop-
ers deride such efforts.

You can’t take the opposite approach and build a detailed model, how-
ever. If you do, it will take ages and you will die from analysis paraly-
sis. The trick is to find and concentrate on the important details. Most
of the details will be dealt with during iterative development. This is
why I prefer to think of this model as a skeleton. The skeleton is the
foundation of the rest of the model. It is detailed, but it is only a small
part of the story.

Naturally, this does not tell you how to differentiate bone from flesh;
that is the art of the skilled analyst, and I haven’t figured out how to
bottle that yet!

Domain modeling is also driven by the use cases as they become
known. As use cases appear, the modeling team should look at them to
assess whether they contain anything that could have a strong impact
on the domain model. If so, they should explore further; if not, the use
cases should be put aside for the time being.

The team that builds the domain model should be a small group (two
to four people) that includes developers and domain experts. The
smallest viable team would be one developer and one domain expert.
The domain expert (and preferably the developer, too) should be
trained in how to use the appropriate UML diagrams for conceptual
modeling.

The team should work intensively during the elaboration period until
it reaches closure on the model. During this period, the leadership
should ensure that the team neither gets bogged down in details nor
operates at so high a level that their feet don’t touch the ground. Once
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they get the hang of what they are doing, bogging down is the biggest
danger. A hard deadline works well in concentrating minds.

As part of understanding the requirements, you should build a proto-
type of any tricky parts of the use cases. Prototyping is a valuable tech-
nique for getting a better understanding of how more dynamic
situations work. Sometimes, I can feel I understand the situation well
from the diagrams, but there are other times when I feel I really need a
prototype to get a proper feel for what’s going on. Usually, I don't pro-
totype the whole picture but, instead, use the overall domain model to
highlight areas that do need prototyping.

When you use a prototype, don’t be constrained by the environment in
which you will actually deliver. I have often gained a lot from analysis
prototyping in Smalltalk, even if I am building a C++ system.

Dealing with Technological Risks

The most important thing to do in addressing technological risks is to
build prototypes that try out the pieces of technology you are thinking
of using.

For example, say you are using C++ and a relational database. These
are the steps you should follow:

1. Get the C++ compilers and other tools.
2. Build a simple part of an early version of the domain model. See

how the tools work for you.
3. Build the database and connect it to the C++ code.
4. Try several tools. See which ones are easiest to work with and best

suited for the job. Get comfortable with the tools you choose.

Don’t forget that the biggest technological risks are inherent in how
the components of a design fit together, rather than present in any of
the components themselves. You may know C++ well, and you may
know relational databases well, but putting them together is not so
easy. This is why it is very important to get all the components you
intend to use and fit them together at this early stage of the process.

You should also address any architectural design decisions during this
stage. These usually take the form of ideas of what the major compo-
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nents are and how they will be built. This is particularly important if
you are contemplating a distributed system.

As part of this exercise, focus on any areas that look like they will be
difficult to change later. Try to do your design in a way that will allow
you to change elements of the design relatively easily. Ask yourself
these questions.

• What will happen if a piece of technology doesn’t work?
• What if we can’t connect two pieces of the puzzle?
• What is the likelihood of something going wrong? How would we

cope if that happens?

As with the domain model, you should look at the use cases as they
appear in order to assess if they contain anything that could cripple
your design. If you fear they may contain a “purple worm,” investi-
gate further.

During this process, you will typically use a number of UML tech-
niques to sketch out your ideas and document the things you try.
Don’t try to be comprehensive at this point; brief sketches are all you
need and, therefore, all you should use.

• Class diagrams (see Chapters 4 and 5) and interaction diagrams
(see Chapter 6) are useful in showing how components communi-
cate.

• Package diagrams (see Chapter 7) can show a high-level picture of
the components at this stage.

• Deployment diagrams (see Chapter 10) can provide an overview of
how pieces are distributed.

Dealing with Skills Risks

I often go to conferences and listen to case-study talks given by people
who have just done an object-oriented project. They usually answer
the question: “What were your biggest mistakes?” with responses that
always include “We should have gotten more training.”

It never ceases to amaze me how companies embark on important OO
projects with little experience and little thought to how to gain more.
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People worry about the costs of training, but they pay every penny as
the project takes longer.

Training is a way to avoid making mistakes because instructors have
already made those mistakes. Making mistakes takes time, and time
costs money. So you pay the same either way, but not having the train-
ing causes the project to take longer.

I’m not a big fan of formal training courses. I’ve taught many of them
and designed some as well. I remain unconvinced that they are effec-
tive in teaching object-oriented skills. They give people an overview of
what they need to know, but they don’t really pass on the core skills
that you need to do a serious project. A short training course can be
useful, but it’s only a beginning.

If you do go for a short training course, pay a lot of attention to the
instructor. It is worth paying a lot extra for someone who is knowl-
edgeable and entertaining because you will learn a lot more in the pro-
cess. Also, get your training in small chunks, just at the time you need
it. If you don’t apply what you have learned in a training course
straight away, you will forget it.

The best way to acquire OO skills is through mentoring, in which you
have an experienced developer work with your project for an
extended period of time. The mentor shows you how to do things,
watches what you do, and passes on tips and short bits of training.

A mentor will work with the specifics of your project and knows
which bits of expertise to apply at the right time. In the early stages, a
mentor is one of the team, helping you come up with a solution. As
time goes on, you become more capable and the mentor does more
reviewing than doing. My goal as a mentor is to render myself unnec-
essary.

You can find mentors for specific areas or for the overall project. Men-
tors can be full time or part time. Many mentors like to work a week
out of each month on each project; others find that too little. Look for a
mentor with knowledge and the ability to transfer that knowledge.
Your mentor may be the most important factor in your project’s suc-
cess; it is worth paying for quality. 

If you can’t get a mentor, consider a project review every couple of
months or so. Under this setup, an experienced mentor comes in for a
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few days to review various aspects of the design. During this time, the
reviewer can highlight any areas of concern, suggest additional ideas,
and outline any useful techniques that the team may be unaware of.
Although this does not give you the full benefits of a good mentor, it
can be valuable in spotting key things that you can do better.

You can also supplement your skills by reading. Try to read a solid
technical book at least once every other month. Even better, read it as
part of a book group. Find a couple of other people who want to read
the same book. Agree to read a few chapters a week, and spend an
hour or two discussing those chapters with the others. By doing this,
you can gain a better understanding of the book than by reading it on
your own. If you are a manager, encourage this. Get a room for the
group; give your staff the money to buy technical books; allocate time
for a book group.

The patterns community has found book groups to be particularly
valuable. Several patterns reading groups have appeared. Look at the
patterns home page (<http://st-www.cs.uiuc.edu/users/patterns/pat-
terns.html>) for more information about these groups.

As you work through elaboration, keep an eye out for any areas in
which you have no skills or experience. Plan to acquire the experience
at the point at which you need it.

Dealing with Political Risks

I can’t offer you any serious advice on this because I’m not a skilled
corporate politician. I strongly suggest that you find someone who is.

Baseline Architecture

An important result of elaboration is that you have a baseline archi-
tecture for your system. This architecture consists of

• Your list of use cases, which tells you what the requirements are
• Your domain model, which captures your understanding of the

business and serves as the starting point for your key domain
classes

• Your technology platform, which describes the key pieces of
implementation technology and how they fit together
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This architecture is the foundation of your development; it acts as the
blueprint for later stages. Inevitably, the details of the architecture will
change, but it shouldn’t sustain too many serious changes.

The importance of a stable architecture does vary with your technol-
ogy, however. In Smalltalk, you can make significant architectural
changes much more easily because of the rapid edit-run cycle times
and the lack of strong typing. This allows architecture to be very evo-
lutionary, as illustrated by the Episodes process pattern (see Cunning-
ham 1996). In C++, it is more important to have a stable architecture
that underpins construction.

When Is Elaboration Finished?

My rule of thumb is that elaboration takes about a fifth of the total
length of the project. Two events are key indicators that elaboration is
complete:

• The developers can feel comfortable providing estimates, to the
nearest person-week of effort, of how long it will take to build each
use case.

• All the significant risks have been identified, and the major ones
are understood to the extent that you know how you intend to deal
with them.

Planning

The essence of a plan is to set up a series of iterations for construction
and to assign use cases to iterations.

The plan is finished when each use case is put into an iteration and
each iteration's start date has been identified. The plan isn’t more
detailed than that.

The first step is to categorize the use cases.

• The users should indicate the level of priority for each use case. I
usually use three levels.
— “I absolutely must have this function for any real system.”
— “I can live without this function for a short period.”
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— “It’s an important function, but I can survive without it for a
while.”

• The developers should consider the architectural risk associated
with each use case, which is the risk that if the use case is put aside
until late in the project, the work that has gone before will be sig-
nificantly compromised, resulting in a lot of rework. Again, I tend
to use three categories: high risk, possible but not likely, and little
chance.

• The developers should assess how confident they feel about esti-
mating the effort required for each use case. I refer to this as the
schedule risk. I find three levels useful here, as well.
— “I’m pretty sure I know how long it will take.”
— “I can estimate the time only to the nearest person-month.”
— “I have no idea.”

Once this is done, you should estimate the length of time each use case
will require, to the nearest person-week. In performing this estimate,
assume you need to do analysis, design, coding, unit testing, integra-
tion, and documentation. Assume also that you have a fully commit-
ted developer with no distractions (we'll add a fudge factor later).

Note that I believe that the developers should estimate, not the manag-
ers. In keeping with that idea, you should ensure that the developer
with the most knowledge of a given use case does the estimate.

Once your estimates are in place, you can assess whether you are
ready to make the plan. Look at the use cases with high schedule risk.
If a lot of the project’s time is tied up in these use cases or if these use
cases contain a lot of architectural risk, then you need to do more elab-
oration.

The next step is to determine your iteration length. You want a fixed
iteration length for the whole project so that you get a regular rhythm
to the iteration delivery. An iteration should be long enough for you to
do a handful of use cases. For Smalltalk, it can be as low as two to three
weeks, for instance; for C++, it can be as high as six to eight weeks.

Now you can consider how much effort you have for each iteration.

A good place to start is to assume your developers will operate at an
average of 50% efficiency—half their time will be spent on developing
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use cases. Multiply the length of the iteration by the number of devel-
opers by one-half. The result is how much development effort you
have for each iteration. For instance, given eight developers and a
three–week iteration length, you would have 12 developer-weeks (8 *
3 * 1/2) of effort per iteration.

Add up your time for all use cases, divide by the effort per iteration,
and add one for luck. The result is your first estimate of how many
iterations you will need for your project.

The next step is to assign the use cases to iterations.

Use cases that carry high priority, architectural risk, and/or schedule
risk should be dealt with early. Do not put off risk until the end! You
may need to split big use cases, and you will probably revise use case
estimates in light of the order in which you are doing things. You can
have less work to do than the effort in the iteration, but you should
never schedule more than your effort allows.

For transition, allocate from 10% to 35% of the construction time for
tuning and packaging for the delivery. (Use a higher figure if you are
inexperienced with tuning and packaging in your current environ-
ment.)

Then add a contingency factor: 10% to 20% of the construction time,
depending on how risky things look. Add this factor to the end of the
transition phase. You should plan to deliver without using contin-
gency time—that is, on your internal target date—but commit to
deliver at the end of contingent time.

After following all these guidelines, you should have a plan that
shows the use cases that will be done during each iteration. This plan
symbolizes commitment among developers and users; a good name
for this plan is the commitment schedule. This schedule is not cast in
stone—indeed, everyone should expect the commitment schedule to
change as the project proceeds. Since it is a commitment between
developers and users, however, changes must be made jointly.

As you can see from this discussion, use cases serve as the foundation
for planning the project, which is why the UML puts a lot of emphasis
on them.
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Construction

Construction builds the system in a series of iterations. Each iteration
is a mini-project. You do analysis, design, coding, testing, and integra-
tion for the use cases assigned to each iteration. You finish the iteration
with a demo to the user and perform system tests to confirm that the
use cases have been built correctly.

The purpose of this process is to reduce risk. Risk often appears
because difficult issues are left to the end of the project. I have seen
projects in which testing and integration are left to the end. Testing
and integration are big tasks, and they always take longer than people
think.

Back in the days of OS/360, Fred Brooks estimated that half a given
project was testing (and the inevitable bug fixing). Testing and integra-
tion are more difficult when left to the end—and more demoralizing.

All this effort leads to a big risk. With iterative development, you do
the whole process for every iteration, which gets you into the habit of
coping with all the issues each time.

The older I get, the more aggressive I get about testing. I like Kent
Beck’s rule of thumb that a developer should write at least as much
test code as production code. Testing should be a continuous process.
No code should be written until you know how to test it. Once you
have written it, write the tests for it. Until the tests work, you cannot
claim to have finished writing the code.

Test code, once written, should be kept forever. Set up your test code
so that you can run every test with a simple command line or GUI but-
ton push. The code should respond either with “OK” or with a list of
failures. Also, all tests should check their own results. There is nothing
more time-wasting than having a test output a number, the meaning of
which you have to research.

Separate the tests into unit and system tests. Unit tests should be writ-
ten by the developers. They should be organized on a package basis
and coded to test the interfaces of all classes. System tests should be
developed by a separate small team whose only job is testing. This
team should take a black-box view of the system and take particular
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delight in finding bugs. (Sinister mustaches and cackling laughs are
optional but desirable.)

The iterations within construction are both incremental and iterative.

• The iterations are incremental in function. Each iteration builds on
the use cases developed in the previous iterations.

• They are iterative in terms of the code base. Each iteration will
involve rewriting some existing code to make it more flexible.
Refactoring (see sidebar) is a highly useful technique in iterating
the code. It’s a good idea to keep an eye on the amount of code
thrown away in each iteration. Be suspicious if less than 10% of the
previous code is discarded each time.

Refactoring

Have you come across the principle of software entropy? It sug-
gests that programs start off in a well-designed state, but as new
bits of functionality are tacked on, programs gradually lose their
structure, eventually deforming into a mass of spaghetti.

Part of this is due to scale. You write a small program that does a
specific job well. People ask you to enhance the program, and it
gets more complex. Even if you try to keep track of the design,
this can still happen.

One of the reasons that software entropy occurs is that when you
add a new function to a program, you build on top of the existing
program, often in a way the existing program was not intended to
support. In such a situation, you can either redesign the existing
program to better support your changes or you can work around
those changes in your additions.

Although in theory it is better to redesign your program, this usu-
ally results in extra work because any rewriting of your existing
program will introduce new bugs and problems. Remember the
old engineering adage: “If it ain’t broke, don't fix it!” However, if
you don’t redesign your program, the additions will be more
complex than they should be.
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Gradually, this extra complexity will exact a stiff penalty. There-
fore, there is a trade-off: Redesigning causes short-term pain for
longer-term gain. Schedule pressure being what it is, most people
prefer to put their pain off to the future.

Refactoring is a term used to describe techniques that reduce the
short-term pain of redesigning. When you refactor, you do not
change the functionality of your program; rather, you change its
internal structure in order to make it easier to understand and
work with.

Refactoring changes are usually small steps: renaming a method,
moving a field from one class to another, consolidating two simi-
lar methods into a superclass. Each step is tiny, yet a couple of
hours’ worth of performing these small steps can do a world of
good to a program.

Refactoring is made easier by the following principles:

• Do not refactor a program and add functionality to it at the
same time. Impose a clear separation between the two when
you work. You might swap between them in short steps—for
instance, half an hour refactoring, an hour adding a new func-
tion, and half an hour refactoring the code you just added.

• Make sure you have good tests in place before you begin
refactoring. Run the tests as often as possible. That way, you
will know quickly if your changes have broken anything.

• Take short, deliberate steps. Move a field from one class to
another. Fuse two similar methods into a superclass. Refactor-
ing often involves making many localized changes that result
in a larger-scale change. If you keep your steps small and test
after each step, you will avoid prolonged debugging.

You should refactor when

• You add functionality to your program and you find the old
code getting in the way. When that becomes a problem, stop
adding the new function and, instead, refactor the old code.
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• You have difficulty understanding the code. Refactoring is a
good way of helping you understand the code and preserving
that understanding for the future.

You will often find you want to refactor code that someone else
wrote. When you do this, do it alongside the code’s author. It is
difficult to write code in a way that others can easily understand.
The best way to refactor is to work alongside someone who does
understand the code. Then you can combine her understanding
with your unfamiliarity.

When to Use Refactoring

Refactoring is a much underused technique. It has only begun to
be recognized, mainly in the Smalltalk community. However, I
believe it is a key technique in improving software development,
regardless of your environment. Ensure that you understand how
to do refactoring in a disciplined way. One way to do this is to
have your mentor teach you the techniques.

Where to Find Out More

Because refactoring is still a new technique, little has been written
about it. William Opdyke’s Ph.D. thesis (1992) is probably the
most extensive treatment of the subject, but it is geared to auto-
matic refactoring tools rather than techniques that humans can
use now. Kent Beck is one of the foremost exponents of refactor-
ing; his patterns book (1996) includes many patterns that are cen-
tral to refactoring. See also Beck’s 1997 article, which gives a good
flavor of the process of refactoring.

If you use VisualWorks or IBM Smalltalk, you should download
Refactory, a tool that supports refactoring (see <http://st-www.cs.
uiuc.edu/users/droberts/Refactory.html>). This tool was devel-
oped by Don Roberts and John Brant, who work with Ralph
Johnson at the University of Illinois. I believe that this tool is the
most important development in coding tools since the Integrated
Development Environment.
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Integration should be a continuous process. For starters, full integra-
tion is part of the end of each iteration. However, integration can and
should occur more frequently than that. A developer should integrate
after every significant piece of work. The full suite of unit tests should
be run at each integration to ensure full regression testing.

Iterative Development and Planning

Within each iteration, you can also do more detailed planning. A key
part of any plan is coping with things that are not going according to
plan. Let’s face it; it always happens.

The key feature of iterative development is that it is time-boxed—you
are not allowed to slip any dates. Instead, use cases can be moved to a
later iteration via negotiation and agreement with the sponsor. The
point of this is to maintain a regular habit of hitting dates and to avoid
the bad habit of slipping dates.

Note, however, that if you find yourself deferring too many use cases,
it’s time to redo the plan, including reestimating use case effort levels.
By this stage, the developers should have a better idea of how long
things will take.

Using the UML in Construction

All UML techniques are useful during this stage. Since I am going to
refer to techniques I haven’t had a chance to talk about yet, feel free to
skip this section and come back to it later.

As you look to add a given use case, you first use the use case to deter-
mine what your scope is. A conceptual class diagram (see Chapter 4)
can be useful to rough out some concepts for the use case and see how
these concepts fit with the software that has already been built. If the
use case contains significant workflow elements, you can look at those
with an activity diagram (see Chapter 9).

The advantage of these techniques at this stage is that they can be used
in conjunction with the domain expert. As Brad Kain says: Analysis
occurs only when the domain expert is in the room (otherwise it is
pseudo-analysis).
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I have found that for the move to design, a specification-perspective
class diagram (see Chapter 4) can be useful in mapping out the classes
in more detail. Interaction diagrams (see Chapter 6) are valuable to
show how the classes will interact to implement the use case.

You can try to draw the class and interaction diagrams directly or use
CRC cards (see page 64) to explore the behavior, and then document
with diagrams, if you wish. Regardless of which approach you take, I
believe it is important to pay a lot of attention to responsibilities in this
stage of the work.

I find UML diagrams useful for getting an overall understanding of a
system. In doing this, however, I should stress that I do not believe in
producing detailed diagrams of the whole system. To quote Ward
Cunningham (1996):

Carefully selected and well-written memos can easily substi-
tute for traditional comprehensive design documentation.
The latter rarely shines except in isolated spots. Elevate those
spots...and forget about the rest.

Confine your documentation to the areas in which the documentation
helps. If you find the documentation isn’t helping you, it's a sign that
something is going wrong.

I use a package diagram (see Chapter 7) as my logical road map of the
system. This diagram helps me understand the logical pieces of the
system and see the dependencies (and keep them under control).

I like to use tools to help me identify the dependencies and to make
sure I don't miss them. Even simple tools such as Perl scripts can help
here. Java, with its explicit support for packages, is a great help. A
deployment diagram (see Chapter 10), which shows the high-level
physical picture, may also prove useful at this stage.

Within each package, I like to see a specification-perspective class dia-
gram. I don’t show every operation on every class. I show only the
associations and key attributes and operations that help me under-
stand what is in there.

This class diagram acts as a graphical table of contents. Often, it helps
to keep a glossary of classes that contains brief definitions of each
class, often via statements of responsibilities. It is also a good idea to
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keep responsibility statements in the code as comments and extract
them with a suitable tool.

If a class has complex lifecycle behavior, I draw a state diagram (see
Chapter 8) to describe it. I do this only if the behavior is sufficiently
complex, which I find doesn’t happen often. More common are com-
plicated interactions among classes, for which I produce an interaction
diagram.

My favorite form of documentation has three basic elements.

1. One or two pages describing a few classes in a class diagram
2. A few interaction diagrams showing how the classes collaborate
3. Some text to pull the diagrams together

Often I include some important code, written in a literate program
style. If there is a particularly complex algorithm involved, I’ll con-
sider using an activity diagram (see Chapter 9), but only if it gives me
more understanding than the code alone. In these cases, I use a specifi-
cation-perspective or implementation-perspective class diagram or
perhaps both—it depends on what I'm trying to communicate.

In the Rational Unified Process, you should draw interaction diagrams
(see Chapter 7) for every use case you identify. These interaction dia-
grams should cover every scenario. You don’t need a separate diagram
for each scenario, but you should ensure that the logic of every sce-
nario is captured by the interaction diagram that addresses the associ-
ated use case. For more information on the details of the Rational
Unified Process, see the amigos’ process book.

If I find concepts that are coming up repeatedly, I use patterns (see
sidebar) to capture the basic ideas.

I use patterns in a number of ways; I also tend to use various forms of
patterns. A pervasive design pattern would suggest the use of a Gang
of Four–style pattern (see Gamma et al. 1994). However, I use other
forms as well, depending on what best seems to fit a particular situa-
tion. (As you might expect, I keep a particular eye out for analysis pat-
terns—see Fowler 1997.)

Patterns are useful within the scope of a project and also in communi-
cating good ideas outside the project. Indeed, I see patterns as particu-
larly valuable for cross-project communication, as well.
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Patterns

The UML tells you how to express an object-oriented design. Pat-
terns look, instead, at the results of the process: example models.

Many people have commented that projects have problems
because the people involved were not aware of designs that are
well-known to those with more experience. Patterns describe
common ways of doing things. They are collected by people who
spot repeating themes in designs. These people take each theme
and describe it so that other people can read the pattern and see
how to apply it.

Let’s look at an example. Say you have some objects running in a
process on your desktop, and they need to communicate with
other objects running in another process. Perhaps this process is
also on your desktop; perhaps it resides elsewhere. You don’t
want the objects in your system to have to worry about finding
other objects on the network or executing remote procedure calls.

What you can do is create a proxy object within your local process
for the remote object. The proxy has the same interface as the
remote object. Your local objects talk to the proxy using the usual
in-process message sends. The proxy then is responsible for pass-
ing any messages on to the real object, wherever it might reside.

Figure 2-2 is a class diagram (see Chapter 4) that illustrates the
structure of the Proxy pattern.

Proxies are a common technique used in networks and elsewhere.

People have a lot of experience using proxies in terms of knowing
how they can be used, what advantages they can bring, their limi-
tations, and how to implement them. Methods books like this one
don’t discuss this knowledge; all they discuss is how you can dia-
gram a proxy. Although useful, it is not as useful as discussing the
experience involving proxies.
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Figure 2-2: Proxy Design Pattern

In the early 1990s, some people began to capture this experience.
They formed a community interested in writing patterns. These
people sponsor conferences and have produced several books.

The most famous patterns book to emerge from this group is the
Gang of Four book (Gamma et al. 1994), which discusses 23 design
patterns in detail.

If you want to know about proxies, this is the source. The Gang of
Four book spends 10 pages on the subject, giving details about
how the objects work together, the benefits and limitations of the
pattern, common variations and usages, and implementation tips
for Smalltalk and C++.

Proxy is a design pattern because it describes a design technique.
Patterns can also exist in other areas. Say you are designing a
system for managing risk in financial markets. You need to
understand how the value of a portfolio of stocks changes over
time. You could do this by keeping a price for each stock and
time-stamping the price. However, you also want to be able to
consider the risk in hypothetical situations (for instance, “What
will happen if the price of oil collapses?”).
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To do this, you can create a Scenario that contains a whole set of
prices for stocks. Then you can have separate Scenarios for the
prices last week, your best guess for next week, your guess for
next week if oil prices collapse, and so forth. This Scenario pattern
(see Figure 2-3) is an analysis pattern because it describes a piece
of domain modeling.

Figure 2-3: Scenario Analysis Pattern

Analysis patterns are valuable because they give you a better start
when you work with a new domain. I started collecting analysis
patterns because I was frustrated by new domains. I knew I
wasn’t the first person to model them, yet each time I had to start
with a blank sheet of paper.

The interesting thing about analysis patterns is they crop up in
unusual places. When I started working on a project to do corpo-
rate financial analysis, I was enormously helped by a set of pat-
terns I had previously discovered in health care.

See Fowler (1997) to learn more about Scenario and other analysis
patterns.
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A pattern is much more than a model. A pattern must also include
the reason why it is the way it is. It is often said that a pattern is a
solution to a problem. The pattern must make the problem clear,
explain why it solves the problem, and also explain in what cir-
cumstances it works and does not work.

Patterns are important because they are the next stage beyond
understanding the basics of a language or a modeling technique.
Patterns give you a series of solutions and also show you what
makes a good model and how you go about constructing a model.
They teach by example.

When I started out, I wondered why I had to invent things from
scratch. Why didn’t I have handbooks to show me how to do
common things? The patterns community is trying to build these
handbooks.

When to Use Patterns

Patterns should be used all the time. Whenever you try to develop
something in analysis, design, coding, or project management,
you should search for any available patterns that might help you.

Where to Find Out More

At the moment, the patterns field is still young, so there is not
much material (which is a relief in a way since the patterns com-
munity has not figured out how to index the material yet!).

The central source of information on patterns is the Patterns
Home Page on the Web: <http://st-www.cs.uiuc.edu/users/pat-
terns/patterns.html>. This gives you key information about
books, conferences, and the like. A number of patterns and infor-
mation about them are kept at Ward Cunningham’s Portland Pat-
terns Repository page: <http://c2.com/ppr/index.html>.
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Transition

The point of iterative development is to do the whole development
process regularly so that the development team gets used to delivering
finished code. But there are some things that should not be done early.
A prime example is optimization.

Optimization reduces the clarity and extensibility of the system in
order to improve performance. That is a trade-off you need to make—
after all, a system does have to be fast enough to meet users’ require-
ments. But optimizing too early makes development tougher, so this is
one thing that does need to be left to the end.

During transition, there is no development to add functionality (unless
it is small and absolutely essential). There is development to fix bugs.

The most influential book on patterns is Gamma et al. (1994),
which is a book of design patterns. You can also find design pat-
terns in Buschmann (1996), together with higher-level architec-
tural patterns. These discuss how such things as pipes and filters,
blackboard architectures, and reflection work. At a lower level,
you can find books, such as Kent Beck's on Smalltalk patterns
(1996), on patterns for specific programming languages. Many of
Beck's patterns are good for other languages, as well. For domain
modeling, I have to suggest my book (Fowler 1997) on analysis
patterns.

The patterns community has regular Pattern Languages of Pro-
gramming (PLoP) conferences, which are designed to help pat-
terns writers. Selected patterns from these conferences are
published in the PLoPD series of books (Coplien and Schmidt
1995 and Vlissides et al. 1996), which include many valuable
papers.

The UML includes some notation to describe the use of a design
pattern. I don't go into it here as it is still in its early stages of
usage, but you will find more about it in the three amigos’ books.
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A good example of a transition phase is that time between the beta
release and the final release of a product.

When to Use Iterative Development

You should use iterative development only on projects that you want
to succeed.

Perhaps that’s a bit glib, but as I get older, I get more aggressive about
using iterative development. Done well, it is an essential technique,
which you can use to expose risk early and to obtain better control
over development. It is not the same as having no management
(although, to be fair, I should point out that some have used it that
way). It does need to be well-planned. But it is a solid approach, and
every OO development book encourages using it—for good reason.

Where to Find Out More

The obvious starting point is the three amigos’ process book.

My favorite sources include Goldberg and Rubin (1995), Booch (1994),
McConnell (1996), Graham (1993), and Cockburn (1998).

• Goldberg and Rubin talk a lot about general principles and cover a
lot of ground.

• Booch’s book is more directed. It says what he does, and it offers
lots of advice and rules of thumb. 

• McConnell also presents plenty of advice, much of it tailored to the
kind of process described in this chapter.

• If you want a step-by-step, fully defined methodology for iterative
development, the best material I have seen is in Graham’s book.

• Cockburn is a great read on the key things to remember for an OO
project. Everyone involved in an OO project should read this first,
especially since it’s only a couple of hundred pages long.
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Rational Software has an unpublished description of the current ver-
sion of the Rational Unified Process process as a product. In published
books, the closest description comes in Jacobson (1994 and 1995). You
should also take a look at the patterns papers contained in Coplien and
Schmidt (1995), and at Ward Cunningham’s “episodes” paper (1996).

Kent Beck is working on a book of project management patterns.
When it comes out, it will doubtless be an excellent resource. In fact,
many ideas in this chapter come from conversations with him and
Ward Cunningham, as well as from phone conversations with Ivar
Jacobson.



Chapter 3

Use Cases

Use cases are interesting phenomena. For a long time, in both object-
oriented and traditional development, people used typical scenarios to
help them understand requirements. However, these scenarios were
treated very informally—always done but rarely documented. Ivar
Jacobson is well-known for changing this with his Objectory method
and associated book (his first one).

Jacobson raised the visibility of the use case (his name for a scenario)
to the extent that it became a primary element in project development
and planning. Since his book was published (1994), the object commu-
nity has adopted use cases to a remarkable degree. My practice has
certainly improved since I started using use cases in this manner.

So what is a use case?

In essence, a use case is a typical interaction between a user and a com-
puter system. Take the word processor I’m using to write this book.
Two typical use cases would be “make some text bold” and “create an
index.” From just those examples, you can get a sense for a number of
properties of use cases.

• A use case captures some user-visible function.
• A use case may be small or large.
• A use case achieves a discrete goal for the user.
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In its simplest usage, you capture a use case by talking to your typical
users and discussing the various things they might want to do with
the system. Take each discrete thing they want to do, give it a name,
and write up a short textual description (no more than a few para-
graphs).

During elaboration, this is all you need to get started. Don’t try to cap-
ture all the details right at the start—you can get them when you need
them. If you think that a given use case has major architectural ramifi-
cations, however, you will need more details up front. Most use cases
can be detailed during the given iteration as you build them.

User Goals and System Interactions

An important issue I’ve come across with use cases is the difference
between what I call user goals and system interactions. For example,
consider the style sheet functionality found in most word processors.

With system interactions, you can say that the use cases would
include the likes of “define a style,” “change a style,” and “move a
style from one document to another.” However, all these use cases
reflect things the user is doing with the system rather than the real
goals the user is trying to achieve. The real user goals might be
described with terms like “ensure consistent formatting for a docu-
ment” and “make one document’s format the same as another.”

This dichotomy between user goal and system interaction is not
present in all situations. For example, the process of indexing a docu-
ment is pretty much the same whether you think of it as a user goal or
a system interaction. However, where user goals and system interac-
tions do differ, it is important to be aware of the difference.

Both styles of use cases have their applications. System interaction use
cases are better for planning purposes; thinking about user goals is
important so that you can consider alternative ways to satisfy the
goals. If you rush too quickly toward system interaction, you will miss
out on creative ways to satisfy user goals more effectively than you
might by using the obvious first choice. In each case it is a good idea to
ask yourself, “Why did we do that?” That question usually leads to a
better understanding of the user goal.
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In my work, I focus on user goals first, and then I come up with use
cases to satisfy them. By the end of the elaboration period, I expect to
have at least one set of system interaction use cases for each user goal I
have identified (at minimum, for the user goals I intend to support in
the first delivery).

Use Case Diagrams

In addition to introducing use cases as primary elements in software
development, Jacobson (1994) also introduced a diagram for visualiz-
ing use cases. The use case diagram is also now part of the UML.

Figure 3-1: Use Case Diagram

Figure 3-1 shows some of the use cases for a financial trading system. 

I’ll begin discussion of the elements of this diagram by talking about
the actors.
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Actors

An actor is a role that a user plays with respect to the system. There are
four actors in Figure 3-1: Trading Manager, Trader, Salesperson, and
Accounting System.

There will probably be many traders in the given organization, but as
far as the system is concerned, they all play the same role. A user may
also play more than one role. For instance, one senior trader may play
the Trading Manager role and also be a regular trader; a Trader may
also be a Salesperson. When dealing with actors, it is important to
think about roles rather than people or job titles.

Actors carry out use cases. A single actor may perform many use
cases; conversely, a use case may have several actors performing it.

In practice, I find that actors are most useful when trying to come up
with the use cases. Faced with a big system, it can often be difficult to
come up with a list of use cases. It is easier in those situations to arrive
at the list of actors first, and then try to work out the use cases for each
actor.

Note that actors don’t need to be human, even though actors are repre-
sented as stick figures within a use case diagram. An actor can also be
an external system that needs some information from the current sys-
tem. In Figure 3-1, we can see the need to update the accounts for the
Accounting System.

The subject of interactions with external systems causes a lot of confu-
sion and stylistic variations among users of use case diagrams.

1. Some people feel that all interactions with remote systems need to
be shown on the diagram. For example, if you need access to Reu-
ters in order to price a deal, you should show a link between the
Price Deal use case and Reuters.

2. Some feel that you should only show external-interaction use cases
when it is the other system that initiates the contact. Using this
rule, you would show only the use case for the Accounting System
if that system invokes some process to tell the source system to do
that.
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3. Some feel that you should show system actors only when they are
the ones who need the use case. So if the system generates a file
every night that is subsequently picked up by the Accounting Sys-
tem, then Accounting System is the relevant actor because it is the
one that needs the file produced.

4. Some feel that thinking of a system as an actor is the wrong focus.
Instead, they deem an actor is a user who wants something from
the system (for example, a particular file). In the case of our exam-
ple system, the actors would be the internal auditors of the com-
pany.

All things considered, I lean toward option 3.

Use cases are all about externally-required functionality. If the
Accounting System needs a file, that is a requirement that needs to be
satisfied.

Accessing Reuters is important but not a user need. If you follow
option 4, you end up analyzing the Accounting System, which is
something you would probably rather not get into. That said, you
should always question use cases with system actors, find out what
the real user goals are, and consider alternative ways of meeting those
goals.

When I’m working with actors and use cases, I don’t worry too much
about what the exact relationships are among them. Most of the time,
what I’m really after is the use cases; the actors are just a way to get
there. As long as I get all the use cases, I’m not worried about the
details of the actors.

One situation in which the actors do live on, however, is in configuring
the system for different kinds of users. If your system has use cases
that correspond with high-level user functions, you can use the actor/
use case links to profile individual users. Each user would have an
associated list of actor names, which you would use to determine
which use cases that user can perform.

Another good reason to track the actors involves needing to know
who wants which use case. This can be important when you are
assessing competing needs. Understanding the actors may help you
negotiate among competing development demands. They can also be
useful in specifying security policy.
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Some use cases don’t have clear links to specific actors. Consider a util-
ity company. Clearly, one of its use cases is “send out bill.” It’s not so
easy to identify an associated actor, however. No particular user role
requests a bill. The bill is sent to the customer, but the customer
wouldn’t object if it didn’t happen. The best guess at an actor here is
the Billing Department, in that it gets value from the use case. But Bill-
ing is not usually involved in playing out the use case.

Actors can have various roles with regard to a use case. They can be
the ones that get value from the use case, or they can just participate in
the use case. Depending on how you use the actor relationship, differ-
ent actor roles will be important to you. I tend to be most concerned
with controlling system development. So I’m generally most inter-
ested in who wants a given use case to be built—usually those people
who get value from the use case.

The key is to remain aware that some use cases will not pop out as a
result of the process of thinking about the use cases for each actor. If
that happens, don’t worry too much. The important thing is under-
standing the use cases and the user goals they satisfy.

A good source for identifying use cases is external events. Think about
all the events from the outside world to which you want to react. A
given event may cause a system reaction that does not involve users,
or it may cause a reaction primarily from the users. Identifying the
events that you need to react to will help you identify the use cases.

Uses and Extends

In addition to the links among actors and use cases, there are two other
types of links in Figure 3-1. These represent the uses and extends rela-
tionships among use cases. These are often the source of confusion for
people who get the purposes of these two verbs confused, so take a
moment to understand them.

You use the extends relationship when you have one use case that is
similar to another use case but does a bit more.

In our example, the basic use case is Capture Deal. This is the case in
which all goes smoothly. There are things that can upset the smooth
capture of a deal, however. One of these things is when some limit is
exceeded—for instance, the maximum amount the trading organiza-
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tion has established for a particular customer. Here we don’t perform
the usual behavior associated with the given use case; we carry out a
variation.

We could put this variation within the Capture Deal use case. How-
ever, this would clutter that use case with a lot of special logic, which
would obscure the “normal” flow.

Another way to address the variation is to put the normal behavior in
one use case and the unusual behavior somewhere else. The following
is the essence of the extends relationship.

1. Capture the simple, normal use case first.
2. For every step in that use case, ask “What could go wrong here?”

and “How might this work out differently?”
3. Plot all variations as extensions of the given use case. There will

often be a fairly high number of extensions. Listing them sepa-
rately makes things much easier to understand.

You may find that you do use case splitting in both the elaboration and
construction phases. In elaboration, I often split any use case that’s get-
ting too complicated. However, there are use cases whose full com-
plexity I don’t get into until construction.

I split at the construction stage of the project if I can’t build the whole
use case in one iteration. I split a complex use case into a normal case
and a few extensions and then build the normal case in one iteration
and the extensions as part of one or more later iterations. (This will
result in a change of the commitment schedule, of course, and needs to
be negotiated with the users.)

The uses relationship occurs when you have a chunk of behavior that
is similar across more than one use case and you don’t want to keep
copying the description of that behavior. For instance, both Analyze
Risk and Price Deal require you to value the deal. Describing deal val-
uation involves a fair chunk of writing, and I hate copy-and-paste
operations. So I spun off a separate Value Deal use case for this situa-
tion and referred to it from the original use cases.

Note the similarities and differences between extends and uses. Both
of them imply factoring out common behavior from several use cases
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to a single use case that is used, or extended by, several other use cases.
However, the intent is different.

The two types of relationships imply different things in their links to
actors. In the case of extends, actors have a relationship to the use case
that is being extended. It is assumed that a given actor will perform
both the base use case and all of the extensions. With a uses relation-
ship, there is often no actor associated with the common use case.
Even if there is, that actor is not considered to be performing the other
use cases.

Apply the following rules.

• Use extends when you are describing a variation on normal behav-
ior.

• Use uses when you are repeating yourself in two or more separate
use cases and you want to avoid repetition.

You may hear the term scenario in connection with use cases. This
word is used inconsistently. Sometimes, scenario is used as a synonym
for use case. Within the UML, scenario refers to a single path through a
use case, one that shows a particular combination of conditions within
that use case. For example, if we want to order some goods, we would
have a single use case with several associated scenarios: one in which
all goes well; one in which there are not enough goods; one in which
our credit is refused; and so forth.

As you perform your modeling tasks, you will come up with models
that express how to do your use cases, either in software or in people
(that is, squishyware). Obviously, there is more than one way to carry
out a use case. In UML-speak, we say that a use case can have many
realizations.

Often, you may want to sketch out several realizations to discuss
before you decide which one to go with. If you do this, always remem-
ber to keep notes about discarded realizations, including why you dis-
carded them. I don’t want to tell you how many hours I have wasted
in discussions that featured the likes of “I know there was a reason why
we didn't do that….”
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When to Use Use Cases

I can’t imagine a situation now in which I would not use use cases.
They are an essential tool in requirements capture and in planning and
controlling an iterative project. Capturing use cases is one of the pri-
mary tasks of the elaboration phase—in fact, it is the first thing you
should do.

Most of your use cases will be generated during that phase of the
project, but you will uncover more as you proceed. Keep an eye out for
them at all times. Every use case is a potential requirement, and until
you have captured a requirement, you cannot plan to deal with it.

Some people list and discuss the use cases first, then do some model-
ing. I sometimes do that, but I’ve also found that conceptual modeling
with users helps uncover use cases. I recommend that you try it both
ways and see which works best for you.

Different designers make use of use cases with varying degrees of
granularity. For example, Ivar Jacobson says that for a 10-person-year
project, he would expect about 20 use cases (not counting uses and
extends relationships). In a recent project of about the same magni-
tude, I had more than 100 use cases. I prefer smaller-grained use cases
because they make it easier to work with the commitment schedule.
However, too many use cases can be overwhelming. I don’t think there
is one right answer at the moment, so be flexible and work with what-
ever seems comfortable.

Where to Find Out More

I think the world is still waiting for a really good book on use cases.
Naturally, Jacobson’s first book (1994) is a source, given that it's the
book that started the ball rolling. Jacobson’s follow-up book (1995) is
useful for its accent on business process use cases (which arguably
should be used all the time). Ian Graham (1993) also includes some
good advice (he uses the term “script” in place of “use case”). You
should also look at the papers on use cases at Alistair Cockburn's Web
site: <http://members.aol.com/acockburn>.
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Chapter 4

Class Diagrams:
The Essentials

The class diagram technique has become truly central within object-
oriented methods. Virtually every method has included some varia-
tion on this technique.

In addition to being widely used, the class diagram is also subject to
the greatest range of modeling concepts. Although the basic elements
are needed by everyone, the advanced concepts are used less often.
Therefore, I’ve broken my discussion of class diagrams into two parts,
the essentials (this chapter) and the advanced (see Chapter 5).

A class diagram describes the types of objects in the system and the
various kinds of static relationships that exist among them. There are
two principal kinds of static relationships:

• associations (for example, a customer may rent a number of vid-
eos)

• subtypes (a nurse is a kind of person)

Class diagrams also show the attributes and operations of a class and
the constraints that apply to the way objects are connected.

The various OO methods use different (and often conflicting) termi-
nology for these concepts. This is extremely frustrating but inevitable,
given that OO languages are just as inconsiderate. It is in this area that
the UML will bring some of its greatest benefits in simplifying these
different diagrams.
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Figure 4-1 shows a typical class diagram.

Figure 4-1: Class Diagram
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Perspectives

Before I begin describing class diagrams, I would like to bring out an
important subtlety in the way people use them. This subtlety is usu-
ally undocumented but has an impact on the way you should interpret
a diagram, for it very much concerns what it is you are describing with
a model.

Following the lead of Steve Cook and John Daniels (1994), I say that
there are three perspectives you can use in drawing class diagrams (or
indeed any model, but this breakdown is most noticeable in connec-
tion with class diagrams).

• Conceptual. If you take the conceptual perspective, you draw a
diagram that represents the concepts in the domain under study.
These concepts will naturally relate to the classes that implement
them, but there is often no direct mapping. Indeed, a conceptual
model should be drawn with little or no regard for the software
that might implement it, so it can be considered language-indepen-
dent. (Cook and Daniels call this the essential perspective; I use the
term “conceptual” because it has been around for a long time.)

• Specification. Now we are looking at software, but we are looking
at the interfaces of the software, not the implementation. We are
thus looking at types rather than classes. Object-oriented develop-
ment puts a great emphasis on the difference between interface
and implementation, but this is often overlooked in practice
because the notion of class in an OO language combines both inter-
face and implementation. So you often hear the interfaces referred
to as types and the implementation of those interfaces as the
classes. Most methods, influenced by the language treatment, have
followed suit. This is changing (Java and CORBA will have some
influence here), but not quickly enough. A type represents an inter-
face that may have many implementations, different because of,
say, implementation environment, performance characteristics, or
vendor. The distinction can be very important in a number of
design techniques based on delegation; see the discussion of this
topic in Gamma et al. (1994).
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• Implementation. In this view, we really do have classes and we are
laying the implementation bare. This is probably the most often-
used perspective, but in many ways the specification perspective is
often a better one to take.

Understanding perspective is crucial to both drawing and reading
class diagrams. Unfortunately, the lines between the perspectives are
not sharp, and most modelers do not take care to get their perspective
sorted out when they are drawing. As I talk about class diagrams fur-
ther, I will stress how each element of the technique depends heavily
on the perspective.

When you draw a diagram, draw it from a single, clear perspective.
When you read a diagram, make sure you know from which perspec-
tive it has been drawn. That knowledge is essential if you are to inter-
pret the diagram properly. 

Perspective is not part of the formal UML, but I have found it
extremely valuable when modeling and when reviewing models. The
UML can be used with all three perspectives. By tagging classes with a
stereotype (see page 75), you can provide an indication of the perspec-
tive. You mark classes with «implementation class» to show imple-
mentation perspective and «type» for specification and conceptual
perspectives. Most users of OO methods take an implementation per-
spective, which is a shame because the other perspectives are often
more useful. 

Table 4-1 lists four UML terms that appear in Figure 4-1 and their cor-
responding terms within other well-established methodologies.

Associations

Figure 4-1 shows a simple class model that would not surprise anyone
who has worked with order processing. I'll describe each of the pieces
and talk about how you would interpret them from the various per-
spectives.

I’ll begin with the associations. Associations represent relationships
between instances of classes (a person works for a company; a com-
pany has a number of offices).
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Table 4-1: Class Diagram Terminology

From the conceptual perspective, associations represent conceptual
relationships between classes. The diagram indicates that an Order has
to come from a single Customer and that a Customer may make sev-
eral Orders over time. Each of these Orders has several Order Lines,
each of which refers to a single Product.

Each association has two roles; each role is a direction on the associa-
tion. Thus, the association between Customer and Order contains two
roles: one from Customer to Order; the second from Order to Cus-
tomer.

A role can be explicitly named with a label. In this case, the role in the
direction Order to Order Lines is called Line Items. If there is no label,
you name a role after the target class—so the role from Order to Cus-
tomer would be called Customer. (In this book, I refer to the class that
the role goes from as the source and the class the role goes to as the tar-
get. This means that there is a Customer role whose source is Order
and whose target is Customer.)

A role also has multiplicity, which is an indication of how many
objects may participate in the given relationship. In Figure 4-1, the *
between Customer and Order indicates that a Customer may have
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many Orders associated with it; the 1 indicates that an Order comes
from only one Customer.

In general, the multiplicity indicates lower and upper bounds for the
participating objects. The * actually represents the range 0..infinity: a
Customer need not have placed an Order, and there is no upper limit
(in theory, at least!) to the number of Orders a Customer may place.
The 1 stands for 1..1: an Order must have been placed by exactly one
Customer.

The most common multiplicities in practice are 1, *, and 0..1 (you can
have either none or one). For a more general multiplicity, you can have
a single number (such as 11 for players on a cricket team), a range
(such as 2..4 for players of a canasta game), or discrete combinations of
numbers and ranges (such as 2, 4 for doors in a car).

Figure 4-2 shows cardinality notations in the UML and the major pre-
UML methods.

Within the specification perspective, associations represent responsi-
bilities.

Figure 4-1 implies that there are one or more methods associated with
Customer that will tell me what orders a given Customer has made.
Similarly, there are methods within Order that will let me know which
Customer placed a given Order and what Line Items comprise an
Order.

If there are standard conventions for naming query methods, I can
probably infer from the diagram what these methods are called. For
example, I may have a convention that says that single-valued rela-
tionships are implemented with a method that returns the related
object and multi-valued relationships are implemented with an enu-
meration (iterator) into a collection of the related objects.

Working with a naming convention like this in Java, for instance, I can
infer the following interface for an Order class:

class Order {

public Customer customer();

//Enumeration of order lines
public Enumeration orderLines();
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Figure 4-2: Cardinality Notations
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Figure 4-1 also implies some responsibility for updating the relation-
ship. There should be some way of relating the Order to the Customer.
Again, the details are not shown; it could be that you specify the Cus-
tomer in the constructor for the Order. Or, perhaps there is an addOrder
method associated with Customer. You can make this more explicit by
adding operations to the class box (as we will see later).

These responsibilities do not imply data structure, however. From a
specification-level diagram, I can make no assumptions about the data
structure of the classes. I cannot and should not be able to tell whether
the Order class actually contains a pointer to Customer, or whether the
Order class fulfills its responsibility by executing some selection code
that asks each Customer if it refers to a given Order. The diagram indi-
cates only the interface—nothing more.

If this were an implementation model, we would now imply that
there are pointers in both directions between the related classes. The
diagram would now say that Order has a field that is a collection of
pointers to Order Lines and also has a pointer to Customer. In Java, we
could infer something like the following:

class Order {

private Customer _customer;

private Vector _orderLines;

class Customer {

private Vector _orders;

In this case, we cannot infer anything from the associations about the
interface. The operations on the class would give us this information.

Now take a look at Figure 4-3. It is basically the same as Figure 4-1
except that I have added a couple of arrows on the association lines.
These arrows indicate navigability.

In a specification model, this would indicate that an Order has a
responsibility to tell you which Customer it is for, but a Customer has
no corresponding ability to tell you which Orders it has. Instead of
symmetrical responsibilities, we now have responsibilities on only one
side of the line. In an implementation diagram, one would indicate
that Order contains a pointer to Customer but Customer would not
point to Order.
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Figure 4-3: Class Diagram with Navigabilities
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As you can see, navigability is an important part of implementation
and specification diagrams. I don’t think navigability serves any use-
ful purpose on conceptual diagrams, however.

You will often see a conceptual diagram that first appears with no nav-
igabilities. Then the navigabilities are added as part of the shift to the
specification and implementation perspectives. Note also that the nav-
igabilities are likely to be different between specification and imple-
mentation.

If a navigability exists in only one direction, we call the association a
uni-directional association. A bi-directional association contains
navigabilities in both directions. The UML says that you treat associa-
tions without arrows to mean either the navigability is unknown or
the association is bi-directional. Your project should settle on one or
the other meaning. I prefer it to mean “undecided” for specification
and implementation models.

Bi-directional associations include an extra constraint, which is that
the two roles are inverses of each other. This is similar to the notion of
inverse functions in math. In the context of Figure 4-3, this means that
every Line Item associated with an Order must be associated with the
original Order. Similarly, if you take an Order Line and look at the Line
Items for the associated Order, you should see the original Order Line
in the collection. This property holds true within all three perspectives.

There are several ways of naming associations. Traditional data mod-
elers like to name an association using a verb phrase so that the rela-
tionship can be used in a sentence. Most object modelers prefer to use
nouns to name one or the other of the roles, since that corresponds bet-
ter to responsibilities and operations.

Some people name every association. I choose to name an association
only when doing so improves understanding. I’ve seen too many asso-
ciations with names like “has” or “is related to.” If there is no name on
the role, I consider the name of the role to be the name of the target
class, as I indicated previously.
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Attributes

Attributes are very similar to associations.

At the conceptual level, a Customer’s name attribute indicates that
Customers have names. At the specification level, this attribute indi-
cates that a Customer object can tell you its name and has some way of
setting a name. At the implementation level, a Customer has a field
(also called an instance variable or a data member) for its name.

Depending on the detail in the diagram, the notation for an attribute
can show the attribute’s name, type, and default value (the UML syn-
tax is visibility name: type = defaultValue, where visibility is the same as
for operations, described in the next section).

So what is the difference between an attribute and an association?

From the conceptual perspective, there is no difference—an attribute
carries just another kind of notation that you can use if it seems conve-
nient. Attributes are always single-valued. Usually, a diagram doesn’t
indicate whether an attribute is optional or mandatory (although
strictly speaking, it should).

The difference occurs at the specification and implementation levels.
Attributes imply navigability from the type to the attribute only. Fur-
thermore, it is implied that the type contains solely its own copy of the
attribute object, implying that any type used as an attribute has value
rather than reference semantics.

I’ll talk about value and reference types later on. For the moment, it’s
best to think of attributes as small, simple classes, such as strings,
dates, money objects, and non-object values, such as int and real.

Operations

Operations are the processes that a class knows to carry out. They
most obviously correspond to the methods on a class. At the specifica-
tion level, operations correspond to public methods on a type. Nor-
mally, you don’t show those operations that simply manipulate
attributes, because they can usually be inferred. You may need to indi-
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cate, however, whether a given attribute is read-only or immutable
(that is, its value never changes). In the implementation model, you
may want to show private and protected operations, as well.

The full UML syntax for operations is

visibility name (parameter-list) : return-type-expression {property-string}

where

• visibility is + (public), #  (protected), or – (private)
• name is a string
• parameter-list contains (optional) arguments whose syntax is the

same as that for attributes
• return-type-expression is an optional, language-dependent specifica-

tion
• property-string indicates property values that apply to the given

operation

An example operation might be: + latestAmountOf (PhenomenonType
value) : Quantity

Within conceptual models, operations should not attempt to specify
the interface of a class. Instead, they should indicate the principal
responsibilities of that class, perhaps using a couple of words summa-
rizing a CRC responsibility (see sidebar).

CRC Cards

In the late 1980s, one the biggest centers of object technology was
the research labs of Tektronix, in Portland, Oregon. These labs had
some of the main users of Smalltalk, and many key ideas in object
technology were developed there. Two renowned Smalltalk pro-
grammers there were Ward Cunningham and Kent Beck.

Cunningham and Beck were and are concerned about how to
teach the deep knowledge of Smalltalk they had gained. From this
question of how to teach objects came the simple technique of
Class-Responsibility-Collaboration (CRC) Cards.
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Rather than use diagrams to develop models, as most methodolo-
gists did, Cunningham and Beck represented classes on 4 x 6
index cards. And rather than indicate attributes and methods on
the cards, they wrote responsibilities.

So what is a responsibility? It is really a high-level description of
the purpose of the class. The idea is to try to get away from a
description of bits of data and process and instead capture the
purpose of the class in a few sentences. The choice of a card is
deliberate. You are not allowed to write more than will fit on the
card (see Figure 4-4).

Figure 4-4: Class-Responsibility-Collaboration (CRC) Card

The second C refers to collaborators. With each responsibility, you
indicate which other classes you need to work with to fulfill it.
This gives you some idea of the links between classes—still at a
high level.

   Order
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Determine price Order Line

Check for valid payment Customer

Dispatch to delivery address

Class Name

Responsibility Collaboration
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One of the chief benefits of CRC cards is that they encourage ani-
mated discussion among the developers. They are especially
effective when you are walking through a use case to see how the
classes are going to implement it. Developers pick cards as each
class collaborates in the use case. As ideas about responsibilities
are formed, you can write them on the cards. Thinking about
responsibilities is important, because it gets you away from
classes as dumb data holders and eases the team members toward
understanding the higher-level behavior of each class.

A common mistake I see people make is generating long lists of
low-level responsibilities. This is really missing the point. The
responsibilities should easily fit on a card. I would question any
card with more than three responsibilities. Ask yourself if the
class should be split or if the responsibilities would be better
stated by rolling them up into higher-level statements.

When to Use CRC Cards

Some people find CRC cards to be wonderful; others find the
technique leaves them cold.

I certainly think you should try them out to see if the team likes
working with them. Use them especially if your teams are getting
bogged down in too many details too early or if they seem to be
identifying classes that seem cluttered and lack clear definitions.

You can use class diagrams and interaction diagrams (see Chapter
6) to capture and formalize the results of CRC modeling into a
UML-notated design. Ensure that each class within your class dia-
grams has a statement of its responsibilities.

Where to Find Out More

Sadly, Cunningham and Beck have never written a book about
CRC, but you can find their original paper (Beck and Cunning-
ham 1989) on the Web (<http://c2.com/doc/oopsla89/paper.
html>). On the whole, the book that best describes this technique
and, indeed, the whole notion of using responsibilities, is Rebecca
Wirfs-Brock's (1990). It is a relatively old book by OO standards,
but it has aged well.
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I often find it useful to distinguish between operations that change the
state of a class and those that don’t. A query is an operation that gets a
value from a class without changing that class’ observable state. The
observable state of an object is the state you can determine from its
associated queries.

Consider an Account object that calculates its balance from a list of
entries. To improve performance, Account might cache the result of
the balance calculation in a field for future queries. So if the cache is
empty, the first time the “balance” operation is called, it puts the result
into the cache field. The “balance” operation thus changes the actual
state of the Account object but not the observable state because all que-
ries return the same value whether or not the cache is full. Operations
that do change the observable state of an object are called modifiers. 

I find it helpful to be clear about the difference between queries and
modifiers. Queries can be executed in any order, but the sequence of
modifiers is more important. It’s my practice to avoid returning values
from modifiers in order to keep them separate.

Other terms you sometimes see are getting methods and setting meth-
ods. A getting method is a method that returns a value from a field
(and does nothing else). A setting method puts a value into a field
(and does nothing else). From the outside, a client should not be able
to tell if a query is a getting method nor if a modifier is a setting
method. Knowledge of getting and setting methods is entirely internal
to the class.

Another distinction is between operation and method. An operation is
something that is invoked on an object (the procedure call) while a
method is the body of procedure. The two are different when you have
polymorphism. If you have a supertype with three subtypes, each of
which overrides the supertype’s “foo” operation, you have one opera-
tion and four methods that implement it.

People usually use operation and method interchangeably, but there
are times when it is useful to be precise about the difference. Some-
times, people distinguish them by using the terms method call or
method declaration (for operation) and method body.
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Languages have their own naming conventions. In C++, operations
are called member functions, while Smalltalk calls operations meth-
ods. C++ also uses the term members of a class to mean a class's oper-
ations and methods.

Generalization

A typical example of generalization involves the personal and corpo-
rate customers of a business. They have differences but also many sim-
ilarities. The similarities can be placed in a general Customer class (the
supertype) with Personal Customer and Corporate Customer as sub-
types.

This phenomenon is also subject to different interpretations at the dif-
ferent levels of modeling. Conceptually, for instance, we can say that
Corporate Customer is a subtype of Customer if all instances of Cor-
porate Customer are also, by definition, instances of Customer. A Cor-
porate Customer is then a special kind of Customer. The key idea is
that everything we say about a Customer (associations, attributes,
operations) is true also for a Corporate Customer.

Within a specification model, generalization means that the interface
of the subtype must include all elements from the interface of the
supertype. The subtype’s interface is said to conform to the super-
type’s interface.

Another way of thinking of this involves the principle of substitut-
ability. I should be able to substitute a Corporate Customer within any
code that requires a Customer, and everything should work fine.
Essentially, this means that if I write code assuming I have a Customer,
then I can freely use any subtype of Customer. The Corporate Cus-
tomer may respond to certain commands differently from another
Customer (per the principle of polymorphism), but the caller should
not need to worry about the difference.

Generalization at the implementation perspective is associated with
inheritance in programming languages. The subclass inherits all the
methods and fields of the superclass and may override inherited meth-
ods.
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The key point here is the difference between generalization at the spec-
ification perspective (subtyping, or interface-inheritance) and at the
implementation perspective (subclassing, or implementation-inherit-
ance). Subclassing is one way to implement subtyping. You can also
implement subtyping through delegation—indeed, many of the pat-
terns described in Gamma et al. (1994) are about ways of having two
classes with similar interfaces without using subclassing. You might
also look at Martin and Odell’s “pragmatics” book (1996) or Fowler
(1997) for other ideas on implementations for subtyping.

With either of these forms of generalization, you should always ensure
that the conceptual generalization also applies. I have found that if
you don’t do this, you run into trouble because the generalization is
not stable when you make changes later on.

Sometimes, you come across cases in which a subtype has the same
interface as its supertype but the subtype implements operations in a
different way. If you do, you may choose not to show the subtype on a
specification-perspective diagram. I usually do if the users of the class
would find it of interest that types may exist, but I don’t if the sub-
types are varied only because of internal implementation reasons.

Constraint Rules

Much of what you are doing in drawing a class diagram is indicating
constraints.

Figure 4-3 indicates that an Order can be placed only by a single Cus-
tomer. The diagram also implies that each Line Item is thought of sep-
arately: You say 40 brown widgets, 40 blue widgets, and 40 red
widgets, not 40 red, blue, and brown widgets. Further, the diagram
says that Corporate Customers have credit limits but Personal Cus-
tomers do not.

The basic constructs of association, attribute, and generalization do
much to specify important constraints, but they cannot indicate every
constraint. These constraints still need to be captured; the class dia-
gram is a good place to do that.
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The UML defines no strict syntax for describing constraints other than
putting them inside braces ({}). I like using an informal English,
emphasizing readability. You can also use a more formal statement,
such as predicate calculus or some derivative. Another option is to use
a fragment of program code.

Ideally, rules should be implemented as assertions in your program-
ming language. These correspond with the Design by Contract notion
of invariants (see sidebar). I like to create a checkInvariant method on
classes that have invariants and call it within debug code to help check
invariants.

Design by Contract

Design by Contract is a design technique developed by Bertrand
Meyer. The technique is a central feature of the Eiffel language
that he developed. Design by Contract is not specific to Eiffel,
however; it is a valuable technique that can be used with any pro-
gramming language.

At the heart of Design by Contract is the assertion. An assertion is
a Boolean statement that should never be false and, therefore, will
only be false because of a bug. Typically, assertions are checked
only during debug and are not checked during production execu-
tion. Indeed, a program should never assume that assertions are
being checked.

Design by Contract uses three kinds of assertions: post-condi-
tions, pre-conditions, and invariants.

Pre-conditions and post-conditions apply to operations. A post-
condition is a statement of what the world should look like after
execution of an operation. For instance, if we define the operation
“square root” on a number, the post-condition would take the
form input = result * result, where result is the output and input is
the input value. The post-condition is a useful way of saying what
we do without saying how we do it—in other words, of separat-
ing interface from implementation.
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A pre-condition is a statement of how we expect the world to be
before we execute an operation. We might define a pre-condition
for the “square root” operation of input >= 0. Such a pre-condition
says that it is an error to invoke “square root” on a negative num-
ber and that the consequences of doing so are undefined.

On first glance, this seems a bad idea, because we should put
some check somewhere to ensure that “square root” is invoked
properly. The important question is who is responsible for doing
so.

The pre-condition makes it explicit that the caller is responsible
for checking. Without this explicit statement of responsibilities,
we can get either too little checking (because both parties assume
that the other is responsible) or too much (both parties check). Too
much checking is a bad thing, because it leads to lots of duplicate
checking code, which can significantly increase the complexity of
a program. Being explicit about who is responsible helps to
reduce this complexity. The danger that the caller forgets to check
is reduced by the fact that assertions are usually checked during
debugging and testing.

From these definitions of pre-condition and post-condition, we
can see a strong definition of the term exception, which occurs
when an operation is invoked with its pre-condition satisfied, yet
it cannot return with its post-condition satisfied.

An invariant is an assertion about a class. For instance, an
Account class may have an invariant that says that balance ==
sum(entries.amount()). The invariant is “always” true for all
instances of the class. Here, “always” means “whenever the object
is available to have an operation invoked on it.”

In essence, this means that the invariant is added to pre-condi-
tions and post-conditions associated with all public operations of
the given class. The invariant may become false during execution
of a method, but it should be restored to true by the time any
other object can do anything to the receiver.
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Assertions can play a unique role in subclassing.

One of the dangers of polymorphism is that you could redefine a
subclass’s operations to be inconsistent with the superclass’s
operations. Assertions stop you from doing this. The invariants
and post-conditions of a class must apply to all subclasses. The
subclasses can choose to strengthen these assertions, but they can-
not weaken them. The pre-condition, on the other hand, cannot be
strengthened but may be weakened.

This looks odd at first, but it is important to allow dynamic bind-
ing. You should always be able to treat a subclass object as if it
were an instance of the superclass (per the principle of substitut-
ability). If a subclass strengthened its pre-condition, then a super-
class operation could fail when applied to the subclass.

Essentially, assertions can only increase the responsibilities of the
subclass. Pre-conditions are a statement of passing a responsibil-
ity on to the caller; you increase the responsibilities of a class by
weakening a pre-condition. In practice, all of this allows much
better control of subclassing and helps you to ensure that sub-
classes behave properly.

Ideally, assertions should be included in the code as part of the
interface definition. Compilers should be able to turn assertion
checking on for debugging and remove it for production use. Var-
ious stages of assertion checking can be used. Pre-conditions often
give you the best chances of catching errors for the least amount
of processing overhead.

When to Use Design by Contract

Design by Contract is a valuable technique that you should use
whenever you program. It is particular helpful in building clear
interfaces.
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When to Use Class Diagrams

Class diagrams are the backbone of nearly all OO methods, so you will
find yourself using them all the time. This chapter covers the basic
concepts; Chapter 5 discusses many of the advanced concepts.

The trouble with class diagrams is that they are so rich that they can be
overwhelming to use. Here are a few tips.

• Don’t try to use all the notations available to you. Start with the
simple stuff in this chapter: classes, associations, attributes, and
generalization. Introduce other notations from Chapter 5 only
when you need them.

Only Eiffel supports assertions as part of its language, but Eiffel
is, unfortunately, not a widely used language. It is straightfor-
ward to add mechanisms to C++ and Smalltalk to support some
assertions. It is rather more awkward to do so to Java, but it is
possible.

UML does not talk much about assertions, but you can use them
without any trouble. Invariants are equivalent to constraint rules
on class diagrams, and you should use these as much as possible.
Operation pre-conditions and post-conditions should be docu-
mented within your operation definitions.

Where to Find Out More

Meyer’s book (1997) is a classic (albeit now huge) work on OO
design that talks a lot about assertions. Kim Walden and Jean-
Marc Nerson (1995) and Steve Cook and John Daniels (1994) use
Design by Contract extensively in their books.

You can also get more information from ISE (Bertrand Meyer's
company) at <www.eiffel.com>.
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• Fit the perspective from which you are drawing the models to the
stage of the project.

— If you are in analysis, draw conceptual models.

— When working with software, concentrate on specification 
models.

— Draw implementation models only when you are illustrating a 
particular implementation technique.

• Don’t draw models for everything; instead, concentrate on the key
areas. It is better to have a few diagrams that you use and keep up-
to-date than to have many forgotten, obsolete models.

The biggest danger with class diagrams is that you can get bogged
down in implementation details far too early. To combat this, focus on
the conceptual and specification perspectives. If you run into these
problems, you may well find CRC cards (see page 64) to be extremely
useful.

Where to Find Out More

The three amigos’ books will serve as the definitive reference for class
diagrams. If you are new to objects, the best currently available book is
Larman (1998), which uses UML notation. For a conceptual perspec-
tive, try Martin and Odell’s “foundations” book (1998), now available
in a UML edition. After that, any good OO book will add interesting
insights. Of the older books, I particularly like Cook and Daniels
(1994) for its treatment of perspectives and the formality that the
authors introduce.



Chapter 5

Class Diagrams: 
Advanced Concepts

The concepts described in Chapter 4 correspond with the key nota-
tions in class diagrams. Those are the first ones to understand and
become familiar with, as they will comprise 90% of your effort in
building class diagrams.

The class diagram technique, however, has bred dozens of notations
for additional concepts. I find that I don’t use these often, but they are
handy when they are appropriate. I’ll discuss them one at a time, and
point out some of the issues in using them. Remember, however, that
they are all optional, and many people have gotten a lot of value out of
class diagrams without using these additional items.

You will probably find this chapter somewhat heavy going. The good
news is that you can safely skip this chapter during your first pass
through the book and come back to it later.

Stereotypes

The idea of stereotypes was coined by Rebecca Wirfs-Brock (Wirfs-
Brock et al. 1990). The concept has been seized with great enthusiasm
75
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by the inventors of the UML, albeit in a way that doesn’t really mean
the same thing. Both ideas have value, however.

The original idea of a stereotype was a high-level classification of an
object that gave you some indication of the kind of object it was. An
example is the distinction between a “controller” and a “coordinator.”

Often, you run into OO designs in which one class seems to do all the
work, often via a big doIt method, and the other classes basically do
nothing but encapsulate data. This is a poor design because it means
that the controller is very complex and difficult to deal with.

To improve this, you move behavior from the controller to the rela-
tively dumb data objects, so those objects become more intelligent and
get higher-level responsibilities. The controller now becomes a coordi-
nator. The coordinator is responsible for firing off tasks in a particular
sequence, but other objects know how to carry out these tasks. 

The essence of the stereotype is that it suggests certain outline respon-
sibilities for a class. The UML has taken this idea and turned it into a
general extension mechanism for the language itself.

In Jacobson's original work (1994), he classifies all the classes in a sys-
tem into three classifications: interface objects, control objects, and
entity objects. (His control objects are, when well-designed, like Wirfs-
Brock’s coordinators.) Jacobson suggested rules for how these kinds of
classes should communicate and gave each kind a different icon. This
distinction is not a core part of the UML. Instead, these kinds of classes
are actually stereotypes of classes—indeed, they are very much stereo-
types in the Wirfs-Brock sense of the term.

Stereotypes are usually shown in text between guillemets («control
object»), but they can also be shown by defining an icon for the stereo-
type. The idea is that if you are not using Jacobson’s approach, you can
forget about the stereotypes. If you want to use that approach, you can
define the stereotypes and the rules for using them.

Many extensions to the core UML can be described as a collection of
stereotypes. Within class diagrams, these might be stereotypes of
classes, associations, or generalizations. You can think of the stereo-
types as subtypes of the meta-model types Class, Association, and
Generalization.
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I’ve noticed that people using the UML tend to get confused between
constraints and stereotypes. If you mark a class as abstract, is that a
constraint or a stereotype? The current official documents call it a con-
straint, but you should be aware that there is a blurred usage between
the two. This is not surprising as subtypes are often more constrained
than supertypes.

Multiple and Dynamic Classification

Classification refers to the relationship between an object and its type.

Most methods make certain assumptions about this type of relation-
ship—assumptions that are also present in mainstream OO program-
ming languages. These assumptions were questioned by Jim Odell,
who felt that they were too restrictive for conceptual modeling. The
assumptions are of single, static classification of objects; Odell sug-
gests using multiple, dynamic classification of objects for conceptual
models.

In single classification, an object belongs to a single type, which may
inherit from supertypes. In multiple classification, an object may be
described by several types that are not necessarily connected by inher-
itance.

Note that multiple classification is different from multiple inheritance.
Multiple inheritance says a type may have many supertypes, but that a
single type must be defined for each object. Multiple classification
allows multiple types for an object without defining a specific type for
the purpose.

As an example of this, consider a person subtyped as either man or
woman, doctor or nurse, patient or not (see Figure 5-1). Multiple clas-
sification allows an object to have any of these types assigned to it in
any allowable combination without the need for types to be defined
for all the legal combinations.

If you use multiple classification, you need to be sure that you make it
clear which combinations are legal. You do this by labeling a generali-
zation line with a discriminator, which is an indication of the basis of
the subtyping. Several subtypes can share the same discriminator. All
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subtypes with the same discriminator are disjoint—that is, any
instance of the supertype may be an instance of only one of the sub-
types within that discriminator. A good convention is to have all sub-
classes that use one discriminator roll up to one triangle, as shown in
Figure 5-1. Alternatively, you can have several arrows with the same
text label.

 

Figure 5-1: Multiple Classification

A useful (but non standard UML) constraint is to mark the discrimina-
tor as {mandatory}. This means that any instance of the superclass
must be an instance of one of the subclasses in that group. (The super-
class is then abstract.)

To illustrate, note the following legal combinations of subtypes in the
diagram: (Female, Patient, Nurse); (Male, Physiotherapist); (Female,
Patient); and (Female, Doctor, Surgeon). Note also that combinations
such as (Patient, Doctor) and (Male, Doctor, Nurse) are illegal: The
former because it doesn’t include a type from the {mandatory} Sex dis-
criminator; the latter because it contains two types from the Role dis-
criminator. Single classification, by definition, corresponds to a single,
unlabeled discriminator.
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Another question is whether an object may change its type. A good
example here is of a bank account. When the account is overdrawn, it
substantially changes its behavior—specifically, several operations
(including “withdraw” and “close”) get overridden.

Dynamic classification allows objects to change type within the sub-
typing structure; static classification does not. With static classifica-
tion, a separation is made between types and states; dynamic
classification combines these notions.

Should you use multiple, dynamic classification? I believe it is useful
for conceptual modeling. You can do it with specification modeling,
but you have to be comfortable with the techniques for implementing
it. The trick is to implement in such a way that it looks the same as
subclassing from the interface so that a user of a class cannot tell which
implementation is being used. (See Fowler 1997 for some techniques.)
However, like most of these things, the choice depends on the circum-
stances, and you have to use your best judgment. The transformation
from a multiple, dynamic interface to a single static implementation
may well be more trouble than it is worth.

Figure 5-2: Dynamic Classification

Figure 5-2 shows an example of using dynamic classification for a per-
son's job, which, of course, can change. This can be appropriate, but
the subtypes would need additional behavior, instead of being just
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labels. In these cases, it is often worth creating a separate class for the
job and linking the person to it with an association. I wrote a pattern,
called Role Models, on this subject; you can find information about this
pattern, and other information that supplements my Analysis Patterns
book, at <http://www.aw.com/cp/fowler.html>.

Aggregation and Composition

One of my biggest bêtes noires in modeling is aggregation. It’s easy to
explain glibly: Aggregation is the part-of relationship. It’s like saying a
car has an engine and wheels as its parts. This sounds good, but the
difficult thing is considering what the difference is between aggrega-
tion and association.

Peter Coad gave an example of aggregation as the relationship
between an organization and its clerks; Jim Rumbaugh stated that a
company is not an aggregation of its employees. When the gurus can’t
agree, what are we to do? The trouble is, there is no single accepted
definition of the difference between aggregation and association used
by all methodologists.

In fact, few of them use any kind of formal definition. The important
practical thing is that everyone employs a slightly different notion, so
you have to beware of the concept. I have always been wary of the
concept, and I usually prefer to avoid it unless the project team agrees
on some rigorous and useful meaning.

In addition to plain aggregation, the UML offers a stronger variety of
aggregation, called composition. With composition, the part object
may belong to only one whole; further, the parts are usually expected
to live and die with the whole. Any deletion of the whole is considered
to cascade to the parts.

This cascading delete is often considered to be a defining part of aggre-
gation, but it is implied by any role with a 1..1 multiplicity; if you
really want to delete a Customer, for instance, you must cascade that
delete to Orders (and thus to Order Lines).
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Figure 5-3 shows examples of these constructs.  The compositions to
Point indicate that any instance of Point may be in either a Polygon or a
Circle, but not both. An instance of Style, however, may be shared by
many Polygons and Circles. Furthermore, this implies that deleting a
Polygon would cause its associated Points to be deleted, but not the
associated Style.

This constraint—that a Point may appear in only one Polygon or Circle
at a time—could not be expressed by the multiplicities alone. It also
implies that the point is a value object (see page 88). You can add a
multiplicity to a composite side of the association, but I don’t bother.
The black diamond says all that needs to be said.

 

Figure 5-3: Aggregation and Composition

Figure 5-4 shows another notation for composition. In this case, you
put the component inside the whole. The component class’s name is
not bold, and you write it in the form rolename:Class name. In addition,
you put the multiplicity in the top right corner.

Different composition notations work for different situations. There
are a couple more, although the variety of composition notations
offered by the UML does get rather overwhelming. Note that these
variations can be used only for composition, not aggregation.
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Figure 5-4: Alternative Notation for Composition

Derived Associations and Attributes

Derived associations and derived attributes are those that can be cal-
culated from other associations and attributes, respectively, on a class
diagram. For example, an age attribute of a Person can be derived if
you know that Person’s date of birth.

Each perspective brings its own interpretation of derived features on
class diagrams. The most critical of these has to do with the specifica-
tion perspective. From this angle, it is important to realize that derived
features indicate a constraint between values, not a statement of what
is calculated and what is stored.

Figure 5-5 shows a hierarchical structure of accounts drawn from a
specification perspective. The model uses the Composite pattern (see
Gamma et al. 1994).

Style

{ordered}

*

1

3..*

Polygon

Point

*

1

1

Circle

Point
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Figure 5-5: Derived Associations and Attributes

Note the following.

• Entry objects are attached to Detail Accounts.
• The balance of an Account is calculated as the sum of Entry

amounts.
• A Summary Account's entries are the entries of its components,

determined recursively.

Since Figure 5-5 illustrates a specification model, it does not state that
Accounts do not contain fields to hold balances; such a cache may well
be present, but it is hidden from the clients of the Account class.

entries role is derived using
components.entries

Summary
 Account

Detail
Account

Entry

amount:Money

Account

/balance:Money

0..1 1

/entries
components
 {hierarchy}

{balance = sum of amounts of entries}

Derived Role
Derived Attribute

Note

**
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Figure 5-6: Time Period Class

I can illustrate how derived elements indicate constraints with a class
named Time Period (see Figure 5-6).

If this is a specification diagram, then although it suggests that start
and end are stored and duration is calculated, a programmer can, in
fact, implement this class in any fashion that maintains that external
behavior. For instance, storing start and duration and calculating end is
perfectly acceptable.

On implementation diagrams, derived values are valuable for annotat-
ing fields that are used as caches for performance reasons. By marking
them and recording the derivation of the cache, it is easier to see
explicitly what the cache is doing. I often reinforce this in the code by
using the word “cache” on such a field (for instance, balanceCache).

On conceptual diagrams, I use derived markers to remind me where
these derivations exist and to confirm with the domain experts that the
derivations exist. They then correlate with their use in specification
diagrams.

In the worlds of OMT and Odell, you showed a derived association by
a slash on the association line. This usage is not part of the UML, but I
confess I do it anyway—it looks clearer, particularly when I don’t
name the association.

Time Period

start:Date

end:Date

/duration:Date
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Interfaces and Abstract Classes

One of the great qualities of object-oriented development is that you
can vary the interfaces of classes independent of the implementation.
Much of the power of object development comes from this property.
However, few people make good use of it.

Programming languages use a single construct, the class, which con-
tains both interface and implementation. When you subclass, you
inherit both. Using the interface as a separate construct is rarely used,
which is a shame.

A pure interface (as in Java) is a class with no implementation, and,
therefore, has operation declarations but no method bodies and no
fields. Interfaces are often declared through abstract classes. Such
classes may provide some implementation, but often they are used pri-
marily to declare an interface. The point is that subclassing (or some
other mechanism) will provide the implementation, but clients will
never see the implementation, only the interface.

The text editor represented in Figure 5-7 is a typical example of this. To
allow the editor to be platform-independent, we define a platform-
independent abstract Window class. This class has no operations; it
only defines an interface for the text editor to use. Platform-specific
subclasses can be used as desired.

If you have an abstract class or method, the UML convention is to ital-
icize the name of the abstract item. You can use the {abstract} con-
straint, as well (or instead). I use {abstract} on whiteboards because I
can’t write italic text. With a diagramming tool, however, I prefer the
elegance of italics.

Subclassing is not the only way to do this, however. Java provides a
specific interface, and the compiler checks that the class provides an
implementation for all operations defined for that interface.

In Figure 5-8, we see InputStream, DataInput, and DataInputStream
(defined in the standard java.io file). InputStream is an abstract class;
DataInput is an interface.
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Figure 5-7: Window as Abstract Class

Some client class, say, OrderReader, needs to use DataInput’s function-
ality. The DataInputStream class implements both the DataInput and
InputStream interfaces and is a subclass of the latter.

The link between DataInputStream and DataInput is a refinement rela-
tionship. Refinement is a general term used in the UML to indicate a
greater level of detail. It can be used for implementation of interfaces
or for some other purposes (see the three amigos’ books for specifics).
Refinement is deliberately similar to generalization.

In a specification model, both subclassing and refinement would be
represented as subtyping; the distinction between refinement and gen-
eralization is valid only for implementation models. Some modelers
would prefer to use «type» rather than «interface». I prefer «interface»
because it makes the role of the interface explicit.

Text
 Editor

Windows Window

toFront()

toBack()

X11 Window

toFront()

toBack()

Mac Window

toFront()

toBack()

Window  

toFront()

toBack()

{abstract}

Dependency
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Figure 5-8: Interfaces and Abstract Class: An Example from Java

The link between OrderReader and DataInput is a dependency. It
shows that the OrderReader uses the DataInput interface for some
purpose. I will talk more about dependencies in Chapter 7. Essentially,
a dependency indicates that if the DataInput interface changes, the
OrderReader may also have to change. One of the aims of develop-
ment is to keep dependencies to a minimum so that the effects of
changes are minimized.

Figure 5-9 shows an alternative, more compact notation. Here, the
interfaces are represented by small circles (often called lollipops) com-
ing off the classes that implement them. 

Figure 5-9: Lollipop Notation for Interfaces

DataInput

DataInputStream

InputStream OrderReader
{abstract}

«interface»

Dependency
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Generalization

DataInputStream

OrderReader

  DataInput

 InputStream
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There is no distinction between refining an interface and subclassing
an abstract class.

Abstract classes and interfaces are similar, but there is a difference.
Both allow you to define an interface and defer its implementation
until later. However, the abstract class allows you to add implementa-
tion of some of the methods; an interface forces you to defer definition
of all methods.

Reference Objects and Value Objects

One of the common things said about objects is that they have identity.
This is true, but it is not quite as simple as that. In practice, you find
that identity is important for reference objects, but not so important for
value objects.

Reference objects are things like Customer. Here, identity is very
important, because you usually want only one software object to des-
ignate a customer in the real world. Any object that references a Cus-
tomer object will do so through a reference or pointer; all objects that
reference this Customer will reference the same software object. That
way, changes to a Customer are available to all users of the Customer.

If you have two references to a Customer and you wish to see if they
are the same, you usually compare their identities. Copies may be dis-
allowed, and if they are allowed, they tend to be made rarely, perhaps
for archive purposes or for replication across a network. If copies are
made, you need to sort out how to synchronize changes.

Value objects are things like Date. You often have multiple value
objects representing the same object in the real world. For example, it
is normal to have hundreds of objects that designate 1–Jan–97. These
are all interchangeable copies. New dates are created and destroyed
frequently.

If you have two dates and wish to see if they are the same, you don’t
look at their identities—you look at the values they represent. This
usually means you have to write an equality test operator, which for
dates would make a test on year, month, and day (or whatever the
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internal representation is). Usually each object that references 1–Jan–97
has its own dedicated object, but sometimes you do get shared dates.

Value objects should be immutable (frozen). In other words, you
should not be able to take a date object of 1–Jan–97 and change the
same date object to be 2–Jan–97. Instead, you should create a new 2–
Jan–97 object and link to that first object. The reason for this is that if
the date were shared, you would update another object's date in an
unpredictable way.

In C++, this is not an issue because you try hard not to share dates;
sharing value objects leads to memory management problems. In
place of that, you can override assignment to make copies. Within
memory-managed environments such as Java, this is more important,
especially since dates are not immutable in Java. As a rule of thumb,
don't change a value object. 

In days gone by, the difference between reference objects and value
objects was clearer. Value objects were the built-in values of the type
system. Now you can extend the type system with your own classes,
so this issue requires more thought. Within the UML, attributes are
usually used for value objects and associations are used for reference
objects. You can also use composition for value objects.

I don’t find that the distinction between reference and value objects is
useful with conceptual models. There is no difference between the two
constructs from the conceptual perspective. If I represent a link to a
value object with an association, I usually mark the multiplicity of the
role from the value to its user as *, unless there is a uniqueness rule
(such as a sequence number).

Collections for Multi-Valued Roles

A multi-valued role is one whose multiplicity’s upper bound is
greater than 1 (for instance, *). The usual convention is that multi-val-
ued roles are thought of as sets. There is no ordering for the target
objects, and no target object appears in the role more than once. You
can change these assumptions, however, by attaching a constraint.
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The {ordered} constraint implies that there is an ordering to the target
objects (that is, the target objects form a list). Target objects may appear
only once in the list.

I use the {bag} constraint to indicate that target objects may appear
more than once, but there is no ordering. (If I want ordering and multi-
ple appearances, I would use {ordered bag}, although I haven’t needed
to do that yet.) I also use the {hierarchy} constraint to indicate that the
target objects form a hierarchy, and I use the {dag} constraint to indi-
cate a directed acyclic graph.

Frozen

Frozen is a constraint that the UML defines as applicable to a role, but
which can usefully be applied to attributes and classes as well.

On an attribute or role, frozen indicates that the value of that attribute
or role may not change during the lifetime of the source object. The
value must be set at object creation and may never change after that.
The initial value may be null. Of course, if that’s true when the object
is constructed, it will be true as long as the object is alive. This implies
that there must be an argument for this value in a constructor, and that
there is no command operation that updates this value.

When applied to a class, frozen indicates that all roles and attributes
associated with that class are frozen.

Frozen is not the same as read-only. Read-only implies that a value
cannot be changed directly but may change due to a change in some
other value. For instance, if a person has a date of birth and an age,
then the age may be read-only, but it cannot be frozen. I mark “freez-
ing” using the {frozen} constraint, and I mark read-only values with
{read only}.

If you are thinking of “freezing” something, bear in mind that people
make mistakes. In software, we model what we know about the world,
not how the world is. If we were modeling how the world is, a “date of
birth” attribute for a Person object would be frozen, but for most cases,
we would want to change it if we found that a previous recording was
incorrect.
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Classification and Generalization

I often hear people talk about subtyping as the “is a” relationship. I
urge you to beware of that way of thinking. The problem is that the
phrase “is a” can mean different things.

Consider the following phrases.

1. Shep is a Border Collie.
2. A Border Collie is a Dog.
3. Dogs are Animals.
4. A Border Collie is a Breed.
5. Dog is a Species.

Now try combining the phrases. If I combine phrases 1 and 2, I get
“Shep is a Dog”; 2 and 3 taken together yield “Border Collies are Ani-
mals.” And 1 plus 2 plus 3 gives me “Shep is an Animal.” So far, so
good. Now try 1 and 4: “Shep is a Breed.” The combination of 2 and 5
is “A Border Collie is a Species.” These are not so good.

Why can I combine some of these phrases and not others? The reason
is that some are classification (the object Shep is an instance of the type
Border Collie) and some are generalization (the type Border Collie is a
subtype of the type Dog). Generalization is transitive, classification is
not. I can combine a classification followed by a generalization, but not
vice versa.

I make this point to get you to be wary of “is a.” Using it can lead to
inappropriate use of subclassing and confused responsibilities. Better
tests for subtyping in this case would be the phrases “Dogs are kinds
of Animals” and “Every instance of a Border Collie is an instance of a
Dog.”

Qualified Associations

A qualified association is the UML equivalent of a programming con-
cept variously known as associative arrays, maps, and dictionaries.
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Figure 5-10: Qualified Association

Figure 5-10 shows a way of representing the association between the
Order and Order Line classes that uses a qualifier. The qualifier says
that in connection with an Order, there may be one Order Line for each
instance of Product.

Conceptually, this example indicates that you cannot have two Order
Lines within an Order for the same Product. From a specification per-
spective, this qualified association would imply an interface along the
lines of

class Order {

public OrderLine lineItem (Product aProduct);

public void addLineItem (Number amount,
Product forProduct);

Thus, all access to a given Line Item requires the identity of a Product
as an argument. A multiplicity of 1 would indicate that there must be a
Line Item for every Product; * would indicate that you can have multi-
ple Order Lines per Product but that access to the Line Items is still
indexed by Product.

From an implementation perspective, this suggests the use of an asso-
ciative array or similar data structure to hold the order lines.

Class Order {

private Dictionary _lineItems;

Order Line

amount:NumberOrder Product
   0..1

line item
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In conceptual modeling, I use the qualifier construct only to show con-
straints along the lines of “single Order Line per Product on Order.” In
specification models, I use it to show a keyed lookup interface. I‘m
quite happy to use both this and an unqualified association at the same
time if that is a suitable interface.

I use qualifiers within implementation models to show uses of an asso-
ciative array or similar data structure. (See the discussion of the Keyed
Mapping pattern in Fowler 1997 for more information about my use of
qualifiers.)

Association Class

Association classes allow you to add attributes, operations, and other
features to associations, as shown in Figure 5-11. 

Figure 5-11: Association Class

We can see from the diagram that a Person may work for a single
Company. We need to keep information about the period of time that
each employee works for each Company.

We can do this by adding a dateRange attribute to the association. We
could add this attribute to the Person class, but it is really a fact about a
Person's relationship to a Company, which will change should the per-
son's employer change.

Employment

period:dateRange

CompanyPerson
0..1

employer

Association Class

*
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Figure 5-12: Promoting an Association Class to a Full Class

Figure 5-12 shows another way to represent this information: make
Employment a full class in its own right. (Note how the multiplicities
have been moved accordingly.) In this case, each of the classes in the
original association has a single-valued role with regard to the
Employment class. The “employer” role now is derived, although you
don’t have to show this.

What benefit do you gain with the association class to offset the extra
notation you have to remember? The association class adds an extra
constraint, in that there can be only one instance of the association
class between any two participating objects. I feel the need for an
example.

Take a look at the two diagrams contained in Figure 5-13. These dia-
grams have much the same form. However, we could imagine a Per-
son working for the same Company at different periods of time (that
is, he or she leaves and later returns). This means that a Person could
have more than one Employment association with the same Company
over time. With regard to the Person and Skill classes, it would be hard
to see why a Person would have more than one Competency in the
same Skill—indeed, you would probably consider that an error.

In the UML, only the latter case is legal. You can have only one Com-
petency for each combination of Person and Skill. The top diagram in
Figure 5-13 would not allow a Person to have more than one Employ-
ment with the same Company. If you need to allow this, you need to
make Employment a full class, in the style of Figure 5-12.

Employment

period : dateRange CompanyPerson
1   0..1 1

0..1
/employer

*
*
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Figure 5-13: Association Class Subtleties

In the past, modelers made various assumptions about the meaning of
an association class in these circumstances. Some assumed that you
can have only unique combinations (such as competency), while oth-
ers did not assume such a constraint. Many people did not think about
it at all and may have assumed the constraint in some places and not
in others. So when using the UML, remember that the constraint is
always there.

You often find this kind of construct with historic information, such as
in the Employment case above. A useful pattern here is the Historic
Mapping pattern described in Fowler (1997). We can use this by defin-
ing a «history» stereotype (see Figure 5-14).

Employment

period:dateRange

CompanyPerson
employer

Competency

level

SkillPerson

*
*

* *
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Figure 5-14: History Stereotype for Associations

The model indicates that a Person may only work for a single Com-
pany at one time. Over time, however, a Person may work for several
Companies. This suggests an interface along the lines of

class Person {

//get current employer
Company employer();

//employer at a given date
Company employer(Date);

void changeEmployer(Company newEmployer,
Date changeDate);

void leaveEmployer (Date changeDate);

The «history» stereotype is not part of the UML, but I mention it here
for two reasons. First, it is a notion I have found useful on several occa-
sions in my modeling career. Second, it shows how you can use stereo-
types to extend the UML.

Parameterized Class

Several languages, most noticeably C++, have the notion of a parame-
terized class (also known as a template).

This concept is most obviously useful for working with collections in a
strongly typed language. This way, you can define behavior for sets in
general by defining a template class Set.

Person  Company

employer 
«history»  

    0..1

*
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class Set <T> {

void insert (T newElement);

void remove (T anElement);

When you have done this, you can use the general definition to make
set classes for more specific elements.

Set <Employee> employeeSet;

You declare a parameterized class in the UML using the notation
shown in Figure 5-15.

 

Figure 5-15: Parameterized Class

The T in the diagram is a placeholder for the type parameter. (You may
have more than one.) In an untyped language, such as Smalltalk, this
issue does not come up, so this concept is not useful.

A use of a parameterized class, such as Set<Employee> from above, is
called a bound element.

You can show a bound element in two ways. The first way mirrors the
C++ syntax (see Figure 5-16).

 

Figure 5-16: Bound Element (Version 1)

Set

insert(T)
remove(T)

 T

Template Parameter
Template Class

Set <Employees>
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Figure 5-17: Bound Element (Version 2)

The alternative notation (see Figure 5-17) reinforces the link to the tem-
plate and allows you to rename the bound element.

The «bind» stereotype is a stereotype on the refinement relationship.
This relationship indicates that EmployeeSet will conform to the inter-
face of Set. In specification terms, the EmployeeSet is a subtype of Set.
This fits the other way of implementing type-specific collections,
which is to declare all appropriate subtypes.

Using a bound element is not the same as subtyping, however. You are
not allowed to add features to the bound element: it is completely
specified by its template; you are adding only restricting type informa-
tion. If you want to add features, you must create a subtype.

Although collections are the classic use for parameterized classes,
there are many other ways to use them in C++ (see Koenig 1996 for
other ideas).

Parameterized classes allow you to use a derived typing. When you
write the body of the template, you may invoke operations on the

Set

insert(T)
remove(T)

 T

EmployeeSet

«bind»

<Employee>

Template Class

Bound Element
Binding for Parameter
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parameter. When you later declare a bound element, the compiler tries
to ensure that the supplied parameter supports the operations
required by the template.

This is a derived typing mechanism because you do not have to define
a type for the parameter; the compiler figures out if the binding is via-
ble by looking at the source of the template. This property is central to
the use of parameterized classes in C++'s STL; these classes can also be
used for other interesting tricks.

Using parameterized classes does have repercussions—for example,
they can cause considerable code bloat in C++. I rarely use parameter-
ized classes in conceptual modeling, mostly because they are used
mainly for collections, which are implied by associations. (One case I
do use it for is the Range pattern; see Fowler 1997). I only use parame-
terized classes in specification and implementation modeling if they
are supported by the language I am using.

Visibility

I must confess to having some trepidation about this section.

Visibility is one of those subjects that is simple in principle but has
complex subtleties. The simple idea is that any class has public and
private elements. Public elements can be used by any other class; pri-
vate elements can be used only by the owning class. However, each
language makes its own rules. Although they all use terms such as
“public,” “private,” and “protected,” these terms mean different
things in different languages. These differences are small, but they
lead to confusion, especially for those of us who use more than one
language.

The UML tries to address this without getting into a horrible tangle.
Essentially, within the UML, you can tag any attribute or operation
with a visibility indicator. You can use any marker you like, and its
meaning is language-dependent. However, the UML provides three
(rather hard to remember) abbreviations for visibility: + (public), –
(private), and #  (protected).
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I’m tempted to leave it at that, but unfortunately, people draw dia-
grams that use visibility in specific ways. Therefore, to really under-
stand some of the common differences that exist among models, you
need to understand the approaches that different languages take to
visibility. So, let's take a deep breath and dive into the murk.

We start with C++, because it’s the basis for standard UML usage.

• A public member is visible anywhere in the program and may be
called by any object within the system.

• A private member may be used only by the class that defines it.
• A protected member may be used only by (a) the class that defines

it or (b) a subclass of that class.

Consider a Customer class that has a Personal Customer subclass.
Consider also the object Martin, which is an instance of Personal Cus-
tomer. Martin can use any public member of any object in the system.
Martin may also use any private member of the class Personal Cus-
tomer. Martin may not use any private members defined within Cus-
tomer; Martin may, however, use protected members of Customer and
protected users of Personal Customer.

Now look at Smalltalk. Within that language, all instance variables are
private, and all operations are public. However, private doesn’t mean
the same thing in Smalltalk that it does in C++. In a Smalltalk system,
Martin can access any instance variable within his own object whether
that instance variable was defined within Customer or Personal Cus-
tomer. So, in a sense, private in Smalltalk is similar to protected in
C++.

Ah, but that would be too simple.

Let's go back to C++. Say I have another instance of Personal Cus-
tomer, called Kendall. Kendall can access any member of Martin that
was defined as part of the Personal Customer class, whether public,
private, or protected. Kendall may also access any protected or public
member of Martin that was defined within Customer. However, in
Smalltalk, Kendall cannot access Martin's private instance variables—
only Martin’s public operations.

In C++, you may access members of other objects of your own class in
the same way that you access your own members. In Smalltalk, it
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makes no difference whether another object is of the same class or not;
you can access only public parts of another object.

I prefer not to access private or protected members of other objects of
the same class. Many others follow this (unstated) convention.

Java is similar to C++ in that it offers free access to members of other
objects of one’s own class. Java also adds a new visibility level called
package. A member with package visibility may be accessed only by
instances of other classes within the same package.

In keeping with our theme, to ensure that things are not too simple,
Java slightly redefines protected visibility. In Java, a protected member
may be accessed by subclasses but also by any other class in the same
package as the owning class. This means that in Java, protected is
more public than package.

Java also allows classes to be marked public or package. A public
class’s public members may be used by any class that imports the
package to which the class belongs. A package class may be used only
by other classes in the same package.

C++ adds a final twist. One C++ method or class can be made a friend
of a class. A friend has complete access to all members of a class—
hence, the phrase “in C++, friends touch each other’s private parts.”

When you are using visibility, use the rules of the language in which
you are working. When you are looking at a UML model from else-
where, be wary of the meanings of the visibility markers, and be aware
of how those meanings can change from language to language. 

I usually find that visibilities change as you work with the code, so
don’t get too hung up on them early on.

Class Scope Features

You can define operations or attributes at class scope. This means that
they are features of the class, rather than of each object. These opera-
tions or attributes correspond to static members in C++ or Java and to
class methods or variables in Smalltalk. You show them just the same
as any other operation or attribute, except that you underline them.
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Chapter 6

Interaction Diagrams

Interaction diagrams are models that describe how groups of objects
collaborate in some behavior.

Typically, an interaction diagram captures the behavior of a single use
case. The diagram shows a number of example objects and the mes-
sages that are passed between these objects within the use case.

I’ll illustrate the approach with a simple use case that exhibits the fol-
lowing behavior.

• The Order Entry window sends a “prepare” message to an Order.

• The Order then sends “prepare” to each Order Line on the Order.

• Each Order Line checks the given Stock Item.

— If this check returns “true,” the Order Line removes the appro-
priate quantity of Stock Item from stock.

— Otherwise, the quantity of Stock Item has fallen below the reor-
der level, and that Stock Item requests a new delivery.

There are two kinds of interaction diagrams: sequence diagrams and
collaboration diagrams.
103
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Sequence Diagrams

Within a sequence diagram, an object is shown as a box at the top of a
dashed vertical line (see Figure 6-1).

Figure 6-1: Sequence Diagram

an Order Entry
window

an Order an Order Line a Stock Item

a Reorder

a Delivery
 Item

 Item

Message

Object
   * [for all order lines]

Iteration

  hasStock := check ()

   prepare ()
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        remove()

Condition

needsReorder:= needsToReorder()

Self-Delegation

[needsReorder]
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Return

 [hasStock] new

Creation

  prepare ()
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This vertical line is called the object’s lifeline. The lifeline represents
the object’s life during the interaction. This form was first popularized
by Jacobson.

Each message is represented by an arrow between the lifelines of two
objects. The order in which these messages occur is shown top to bot-
tom on the page. Each message is labeled at minimum with the mes-
sage name; you can also include the arguments and some control
information, and you can show self-delegation, a message that an
object sends to itself, by sending the message arrow back to the same
lifeline.

Two bits of control information are valuable. First, there is a condition,
which indicates when a message is sent (for example, [needsReorder]).
The message is only sent if the condition is true. The second useful
control marker is the iteration marker, which shows that a message is
sent many times to multiple receiver objects, as would happen when
you are iterating over a collection. You can show the basis of iteration
within brackets (such as *[for all order lines]).

As you can see, Figure 6-1 is very simple and has immediate visual
appeal. This is its great strength.

One of the hardest things to understand in an object-oriented program
is the overall flow of control. A good design has lots of small methods
in different classes, and at times it can be tricky to figure out the over-
all sequence of behavior. You can end up looking at the code trying to
find the program. This is particularly true for those new to objects.
Sequence diagrams help you to see that sequence.

This diagram includes a return, which indicates the return from a mes-
sage, not a new message. Returns differ from the regular messages in
that the line is dashed.

The POSA diagrams (Buschmann et al. 1996), on which much of the
UML sequence chart notation is based, use returns extensively. I do
not. I find that returns add a lot of clutter to a diagram and tend to
obscure the flow. All returns are implied by the way the messages are
sequenced. I only use returns on those occasions when they improve
the clarity of the diagram.
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My advice is to show returns only when they improve clarity. The only
reason I used a return in Figure 6-1 is to demonstrate the notation; if
you remove the return, I think the diagram remains just as clear.

In UML 1.0,  returns were indicated by feathered arrowheads rather
than dashed lines. I found that so difficult to implement that I used
dashed lines anyway , so I’m glad to see the change.

I mention this because I’d like to offer a piece of general advice here:
Be very wary of going against the UML notation. This notation will
become a well-understood notation, and to do something non-stan-
dard will harm your communication with other designers. If some-
thing is causing painful confusion, however, I would do something
non-standard. After all, the primary purpose of the diagram is com-
munication. If you do break the UML’s rules, do it sparingly and
clearly define what you have done.

Concurrent Processes and Activations

Sequence diagrams are also valuable for concurrent processes.

In Figure 6-2, we see some objects that are checking a bank transaction.

When a Transaction is created, it creates a Transaction Coordinator to
coordinate the checking of the Transaction. This coordinator creates a
number (in this case, two) of Transaction Checker objects, each of
which is responsible for a particular check. This process would make it
easy to add different checking processes because each checker is called
asynchronously and proceeds in parallel.

When a Transaction Checker completes, it notifies the Transaction
Coordinator. The coordinator looks to see if all the checkers called
back. If not, the coordinator does nothing. If they have, and all of them
are successful, as in this case, then the coordinator notifies the Transac-
tion that all is well.

Figure 6-2 introduces a number of new elements to sequence dia-
grams. First, you see activations, which appear explicitly when a
method is active because it is either executing or waiting for a subrou-
tine to return. Many designers use activations all the time. I find they
don’t add much to procedural execution, so I use them only in concur-
rent situations.
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Figure 6-2: Concurrent Processes and Activations

The half-arrowheads indicate an asynchronous message. An asyn-
chronous message does not block the caller, so it can carry on with its
own processing. An asynchronous message can do one of three things.
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Object deletion is shown with a large X. Objects can self-destruct
(shown in Figure 6-2), or they can be destroyed by another message
(see Figure 6-3).

You can show the consequences of self-delegation more clearly when
you have activations. Without them, or without the stacking notation
used here, it is hard to tell where further calls occur after a self-delega-
tion—either in the calling method or the called method. The stacking
activations make this clear. I sometimes find this is a reason to use acti-
vations in a procedural interaction, even though I don’t usually use
activations in these cases.

Figures 6-2 and 6-3 show two of the scenarios in the “transaction
checking” use case. I have drawn each scenario separately. There are
techniques for combining the conditional logic onto a single diagram,
but I prefer not to use them because it makes the diagram too compli-
cated.

In Figure 6-3, I’ve employed a very useful technique: I’ve inserted tex-
tual descriptions of what's happening along the left side of the
sequence diagram. This involves lining up each text block with the
appropriate message within the diagram. This helps in understanding
the diagram (at the cost of some extra work). I do this for documents
I’m going to keep but not for whiteboard sketches.

Collaboration Diagrams

The second form of the interaction diagram is the collaboration dia-
gram.

Within a collaboration diagram, the example objects are shown as
icons. As on a sequence diagram, arrows indicate the messages sent
within the given use case. This time, however, the sequence is indi-
cated by numbering the messages.

Numbering the messages makes it more difficult to see the sequence
than putting the lines down the page. On the other hand, the spatial
layout allows you to show other things more easily. You can show how
the objects are linked together and use the layout to overlay packages
or other information.
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Figure 6-3: Sequence Diagram: Check Failure

You can use one of several numbering schemes for collaboration dia-
grams. The simplest is illustrated in Figure 6-4. Another approach
involves a decimal numbering scheme, seen in Figure 6-5.

In the past, most people used the simple numbering scheme. The UML
uses the decimal scheme because it makes it clear which operation is call-
ing which other operation, although it can be harder to see the overall
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Figure 6-4: Collaboration Diagram with Simple Numbering

Regardless of what numbering scheme you use, you can add the same
kind of control information you might show on a sequence diagram.

In Figures 6-4 and 6-5, you can see the various forms of the UML's
object naming scheme. This takes the form objectName : ClassName,
where either the object name or the class name may be omitted. Note
that if you omit the object name, you must retain the colon so that it is
clear that it is the class name and not the object name. So the name
“Macallan line : Order Line” indicates an instance of Order Line called
Macallan line (this is an order I would particularly appreciate). I tend
to name objects in the Smalltalk style that I used in the sequence dia-
grams. (This scheme is legal UML because “anObject” is a perfectly
good name for an object.)

: Order Entry Window

: Order

Macallan line : Order Line

: Delivery Item : Reorder Item

Macallan stock : Stock Item

  Object

1: prepare()   Message

2*[for all order lines]: prepare()

7 [hasStock]: new

3: hasStock := check ()
4: [hasStock]: remove()

6 [needsReorder]: new

5: needsReorder := needToReorder() 
  Self-Delegation

  Sequence Number
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Figure 6-5: Collaboration Diagram with Decimal Numbering

Comparing Sequence and Collaboration Diagrams

Different developers have different preferences when it comes to
choosing the form of interaction diagram to use. I usually prefer the
sequence diagram because I like the emphasis it puts on sequence; it is
easy to see the order in which things occur. Others prefer the collabo-
ration diagram because they can use the layout to indicate how objects
are statically connected.

One of the principal features of either form of an interaction diagram
is its simplicity. You can easily see the messages by looking at the dia-
gram. However, if you try to represent something other than a single
sequential process without much conditional or looping behavior, the
technique begins to break down.
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: Order

Macallan line : Order Line

: Delivery Item : Reorder Item

Macallan stock : Stock Item

1: prepare()

1.1*[for all order lines]: prepare()

1.1.3: [hasStock]: new

1.1.1: hasStock := check ()
1.1.2: [hasStock]: remove()

1.1.2.2 [needsReorder]:

1.1.2.1: needsReorder :=

  Sequence Number

 needToReorder()    

new    
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Conditional Behavior

What is the best way to show a lot of conditional behavior?

There are two schools of thought. One is to use separate diagrams for
each scenario. The other is to use conditions on messages to indicate
the behavior.

I prefer the former. Interaction diagrams are at their best when the
behavior is simple; they quickly lose their clarity with more complex
behavior. If I want to capture complex behavior in a single diagram, I
prefer to use an activity diagram (see Chapter 9).

The UML provides a lot of additional syntax for sequence diagrams,
based on the work of the patterns team at Siemens (Buschmann et al.
1996). I won’t go into it in detail here, mainly because I’m not too keen
on the complexity it encourages. To me, the beauty of interaction dia-
grams is their simplicity, and many of the additional notations lose it
in their drive to computational completeness. I encourage you not to
rush to the more complex forms of interaction diagrams, because you
may find the simpler ones provide the best value.

When to Use Interaction Diagrams

You should use interaction diagrams when you want to look at the
behavior of several objects within a single use case. They are good at
showing collaborations among the objects; they are not so good at pre-
cise definition of the behavior.

If you want to look at the behavior of a single object across many use
cases, use a state transition diagram (see Chapter 8). If you want to
look at behavior across many use cases or many threads, consider an
activity diagram (see Chapter 9).

Where to Find Out More

Buschmann et al. (1996) uses many extensions that are currently in the
mix for the UML and should give you a good idea of what is in store.



Chapter 7

Package Diagrams

One of the oldest questions in software methods is: How do you break
down a large system into smaller systems? We ask this question
because as systems get large, it becomes difficult to understand them
and the changes we make to them.

Structured methods used functional decomposition, in which the
overall system was mapped as a function and broken down into sub-
functions, which were broken down further into sub-sub-functions,
and so forth. The functions were like the use cases in an object-ori-
ented system in that functions represented something the system as a
whole did.

Those were the days when process and data were separated. So in
addition to a functional decomposition, there was also a data struc-
ture. This took second place, although some Information Engineering
techniques grouped data records into subject areas and produced
matrices to show how the functions and data records interacted.

It is from this viewpoint that we see the biggest change that objects
have wrought. The separation of process and data is gone, functional
decomposition is gone, but the old question still remains. One idea is
to group the classes together into higher-level units. This idea, applied
very loosely, appears in many object methods. In the UML, this group-
ing mechanism is called the package.
113



114 CHAPTER 7 PACKAGE DIAGRAMS
The idea of a package can be applied to any model element, not just
classes. Without some heuristics to group classes together, the group-
ing becomes arbitrary. The one I have found most useful and the one
stressed most in the UML is the dependency. I use the term package
diagram for a diagram that shows packages of classes and the depen-
dencies among them.

Strictly speaking, packages and dependencies are elements on a class
diagram, so a package diagram is just a form of class diagram. In prac-
tice, I find I draw these diagrams for different reasons, so I like to use
different names.

A dependency exists between two elements if changes to the defini-
tion of one element may cause changes to the other. With classes,
dependencies exist for various reasons: One class sends a message to
another; one class has another as part of its data; one class mentions
another as a parameter to an operation. If a class changes its interface,
then any message it sends may no longer be valid.

Ideally, only changes to a class’s interface should affect any other class.
The art of large-scale design involves minimizing dependencies—that
way, the effects of change are reduced and the system requires less
effort to change.

In Figure 7-1, we have domain classes that model the business,
grouped into two packages: Orders and Customers. Both packages are
part of an overall domain package. The Order Capture application has
dependencies with both domain packages. The Order Capture UI has
dependencies with the Order Capture application and the AWT (a Java
GUI toolkit).

A dependency between two packages exists if any dependency exists
between any two classes in the packages. For example, if any class in
the Mailing List package is dependent on any class in the Customers
package, then a dependency exists between their corresponding pack-
ages.

There is an obvious similarity between package dependencies and
compilation dependencies. In fact, there is a vital difference: With
packages, the dependencies are not transitive.

An example of a transitive relationship is one in which Jim has a larger
beard than Grady, and Grady has a larger beard than Ivar, so we can
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deduce that Jim has a larger beard than Ivar. Other examples include
relationships such as “is north of” and “is taller than.” On the other
hand, “is a friend of” is not a transitive relationship.

To see why this is important for dependencies, look at Figure 7-1
again. If a class in the Orders package changes, this does not indicate
that the Order Capture UI package needs to be changed. It merely
indicates that the Order Capture application package needs to be
looked at to see if it changes. Only if the Order Capture application
package’s interface is altered does the Order Capture UI package need
to change. In this case, the Order Capture application is shielding the
Order Capture UI from changes to orders.

Figure 7-1: Package Diagram

This behavior is the classic purpose of a layered architecture. Indeed,
these are the semantics of the Java “imports” behavior but not that of
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C/C++ includes is transitive, which means that the Order Capture UI
would be dependent on the Orders package. A transitive dependency
makes it difficult to limit the scope of changes with compilation.

What does it mean to draw a dependency to a package that contains
subpackages? Designers use different conventions. Some assume that
drawing a dependency to a “containing” package gives visibility to
the contents of all contained packages and their contents. Others say
that you only see classes within the containing package, not classes
within nested packages (that is, the view is opaque).

You should state which convention you are using within your project
or make it clear by putting stereotypes on the packages. I suggest you
use the «transparent» stereotype to indicate that you can see into
nested packages and use the «opaque» stereotype to indicate that you
can't. My convention here is that packages are transparent.

What do you see if you have a dependency into a package? Essentially,
you see all public classes in the package and all of their public meth-
ods. Under the visibility scheme of C++, this can lead to a problem
because you may want a class that contains methods that can be seen
by other objects within the same package but not by objects that
belong to other packages.

This is why Java has the package visibility. Obviously, this makes it
easy for Java. You can mark classes and operations with package visi-
bility within C++. Even though that convention will not be enforced
by the compiler, it is still useful in design.

A useful technique here is to reduce the interface of the package fur-
ther by exporting only a small subset of the operations associated with
the package’s classes. You can do this by giving all classes package vis-
ibility so that they can only be seen by other classes in the same pack-
age and by adding extra public classes for the public behavior. These
extra classes, called Facades (Gamma et al. 1994), then delegate public
operations to their shyer companions in the package.

Packages do not offer answers about how to reduce dependencies in
your system, but they do help you to see what the dependencies are—
and you can only work to reduce dependencies when you can see
them. Package diagrams are a key tool for me in maintaining control
over a system's overall structure.
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Figure 7-2: Advanced Package Diagram
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Figure 7-2 is a more complex package diagram that contains additional
constructs.

First, we see that I have added a Domain package that contains the
orders and customers packages. This is useful because it means I can
draw dependencies to and from the overall package, instead of many
separate dependencies.

When you show a package's contents, you put the name of the pack-
age in the “tab” and the contents inside the main box. These contents
can be a list of classes (such as in the Common package), another pack-
age diagram (as in Domain), or a class diagram (not shown, but the
idea should be obvious by now).

Most of the time, I find it sufficient to list the key classes, but some-
times a further diagram is useful. In this case, I've shown that while
the Order Capture application has a dependency to the entire Domain
package, the Mailing List application is dependent only on the Cus-
tomers package. Strictly speaking, simply listing the classes isn't pure
UML (you should show the class icons), but this is one of the areas in
which I would be inclined to bend the rules.

Figure 7-2 shows the Common package marked as {global}. This
means that all packages in the system have a dependency to Common.
Obviously, you should use this construct sparingly, but common
classes (such as Money) are used everywhere.

You can use generalization with packages. This means that the specific
package must conform to the interface of the general package. This is
comparable to the specification perspective of subtyping within class
diagrams (see Chapter 4). Therefore, in accordance with Figure 7-2, the
Database Broker can use either the Oracle Interface or the Sybase Inter-
face. When generalization is used like this, the general package may be
marked as {abstract} to show that it merely defines an interface that is
implemented by a more specific package.

Generalization implies a dependency from the subtype to the super-
type. (You don't need to show the extra dependency; the generaliza-
tion itself is enough.) Putting abstract classes in a supertype package is
a good way of breaking cycles in the dependency structure. In this sit-
uation, the database interface packages are responsible for loading and
saving the domain objects in a database. They therefore need to know
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about the domain objects. However, the domain objects need to trigger
the loading and saving.

The generalization allows us to put the necessary triggering interface
(various load and save operations) into the database interface package.
These operations are then implemented by classes within the subtype
packages. We don't need a dependency between the database interface
package and the Oracle interface package, because at run time it will
actually be the subtype package that gets called by the domain. But the
domain only thinks it is dealing with the (simpler) database interface
package. Polymorphism is just as useful for packages as it is with
classes.

As a rule of thumb, it is a good idea to remove cycles in the depen-
dency structure. I'm not convinced that you can remove all cycles, but
you should certainly minimize them. If you do have them, try to con-
tain them within a larger containing package. In practice, I have found
cases in which I have not been able to avoid cycles between domain
packages, but I do try to eliminate them from the interactions between
the domain and external interfaces. Package generalization is a key
element in doing this.

In an existing system, dependencies can be inferred by looking at the
classes. This is a very useful task for a tool to perform. I find this
handy if I am trying to improve the structure of an existing system. A
useful early step is to divide the classes into packages and to analyze
the dependences among the packages. Then I refactor to reduce the
dependencies.

When to Use Package Diagrams

Packages are a vital tool for large projects. Use them whenever a class
diagram that encompasses the whole system is no longer legible on a
single letter-size (or A4) sheet of paper.

You want to keep your dependencies to a minimum since this reduces
coupling. However, the heuristics for this are not well understood.
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Packages are particularly useful for testing. Although I do write some
tests on a class by class basis, I prefer to do my unit testing on a pack-
age by package basis. Each package should have one or more test
classes that test the behavior of the package.

Where to Find Out More

The original source for packages was Grady Booch (1994); he called
them class categories. His treatment was very brief, however. The best
discussion I know of this subject is by Robert Martin (1995), whose
book gives several examples of using Booch and C++, with a lot of
attention paid to minimizing dependencies. You can also find valuable
information in Wirfs-Brock 1990; the author refers to packages as sub-
systems.
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State Diagrams

State diagrams are a familiar technique to describe the behavior of a
system. They describe all the possible states a particular object can get
into and how the object's state changes as a result of events that reach
the object. In most OO techniques, state diagrams are drawn for a sin-
gle class to show the lifetime behavior of a single object.

There are many forms of state diagrams, each with slightly different
semantics. The most popular one used in OO techniques is based on
David Harel's statechart (Vol. 8). It was first used for OO methods by
OMT and adopted by Grady Booch in his second edition (1994).

Figure 8-1 shows a UML state diagram for an order in the order pro-
cessing system I introduced earlier in the book. The diagram indicates
the various states of an order.

We begin at the start point and show an initial transition into the
Checking state. This transition is labeled “/get first item.” The syntax
for a transition label has three parts, all of which are optional: Event
[Guard] / Action. In this case, we have only the action “get first item.”
Once we perform that action, we enter the Checking state. This state
has an activity associated with it, indicated by a label with the syntax
do/activity. In this case, the activity is called “check item.”
121
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Figure 8-1: State Diagram

Notice that I used the terms “action” for the transition and “activity”
for the state. Although they are both processes, typically implemented
by some method on Order, they are treated differently. Actions are
associated with transitions and are considered to be processes that
occur quickly and are not interruptible. Activities are associated with
states and can take longer. An activity may be interrupted by some
event.

Note that the definition of “quickly” depends on the kind of system
you are producing. Within a hard real-time system, “quickly” may
mean within a few machine instructions; for regular information sys-
tems, “quickly” might mean less than a few seconds.

When a transition has no event within its label, it means that the tran-
sition occurs as soon as any activity associated with the given state is
completed. In this case, that means as soon as we are done with the
Checking. Three transitions come out of the Checking state. All three
have only guards on their label. A guard is a logical condition that will
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return only “true” or “false.” A guarded transition occurs only if the
guard resolves to “true.”

Only one transition can be taken out of a given state, so we intend the
guards to be mutually exclusive for any event. in Figure 8-1, we
address three conditions.

1. If we have not checked all items, we get the next item and return to 
the Checking state to check it.

2. If we have checked all items and they were all in stock, we transi-
tion to the Dispatching state.

3. If we have checked all items but not all of them were in stock, we
transition to the Waiting state.

I'll look at the Waiting state first. There are no activities for this state, so
the given order sits in this state waiting for an event. Both transitions
out of the Waiting state are labeled with the Item Received event. This
means that the order waits until it detects this event. At that point, it
evaluates the guards on the transitions and makes the appropriate
transition (either to Dispatching or back to Waiting).

Within the Dispatching state, we have an activity that initiates a deliv-
ery. There is also a single, unguarded transition triggered by the Deliv-
ered event. This indicates that the transition will always occur when
that event occurs. Note, however, that the transition does not occur
when the activity completes; instead, once the “initiate delivery” activ-
ity is finished, the given order remains in the Dispatching state until
the Delivered event occurs.

The final thing to address is a transition named “cancelled.” We want
to be able to cancel an order at any point before it is delivered. We
could do this by drawing separate transitions from each of the Check-
ing, Waiting, and Dispatching states. A useful alternative is to create a
superstate of all three states and then draw a single transition from
that. The substates simply inherit any transitions on the superstate.

Figures 8-2 and 8-3 show how these approaches reflect the same sys-
tem behavior. Even with only three duplicated transitions, Figure 8-2
looks rather cluttered. Figure 8-3 makes the whole picture much
clearer, and if changes are needed later, it is harder to forget the can-
celled event.
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Figure 8-2: State Diagram Without Superstates

In the current examples, I have shown an activity within a state, indi-
cated by text in the form do/activity. You can also indicate other things
within a state.

If a state responds to an event with an action that does not cause a
transition, you can show this by putting text in the form eventName /
actionName in the state box.
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Figure 8-3: State Diagram with Superstates

There are also two special events, entry and exit. Any action that is
marked as linked to the entry event is executed whenever the given
state is entered via a transition. The action associated with the exit
event is executed whenever the state is left via a transition. If you have
a transition that goes back to the same state (this is called a self-transi-
tion) with an action, the exit action would be executed first, then the
transition's action, and finally the entry action. If the state has an asso-
ciated activity, as well, that activity is executed after the entry action.
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Concurrent State Diagrams

In addition to states of an order that are based on the availability of the
items, there are also states that are based on payment authorization. If
we look at these states, we might see a state diagram like the one in
Figure 8-4.

Here we begin by doing an authorization. The “check payment” activ-
ity finishes by signaling that the payment is approved. If the payment
is OK, the given order waits in the Authorized state until the “deliver”
event occurs. Otherwise, the order enters the Rejected state.

The Order object exhibits a combination of the behaviors shown in Fig-
ures 8-1 and 8-2. The associated states and the Cancelled state dis-
cussed earlier can be combined on a concurrent state diagram (see
Figure 8-5).

Figure 8-4: Payment Authorization
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Delivered
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Figure 8-5: Concurrent State Diagram 

Note that in Figure 8-5, I left out details of the internal states.

The concurrent sections of the state diagram are places in which at any
point, the given order is in two different states, one from each dia-
gram. When the order leaves the concurrent states, it is only in a single
state. We can see that an order starts off in both the Checking and
Authorizing states. If the “check payment” activity of the Authorizing
state completes successfully first, then the order will be in the Check-
ing and Authorized states. If the “cancel” event occurs, then the order
will be in only the Cancelled state.

Concurrent state diagrams are useful when a given object has sets of
independent behaviors. Note, however, that you should not get too
many concurrent sets of behaviors occurring in a single object. If you
have several complicated concurrent state diagrams for an object, you
should consider splitting the object into separate objects.
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When to Use State Diagrams

State diagrams are good at describing the behavior of an object across
several use cases. They are not very good at describing behavior that
involves a number of objects collaborating together. As such, it is use-
ful to combine state diagrams with other techniques. For instance,
interaction diagrams (see Chapter 6) are good at describing the behav-
ior of several objects in a single use case, and activity diagrams (see
Chapter 9) are good at showing the general sequence of actions for
several objects and use cases.

Some people find state diagrams natural, but many find them unnatu-
ral. Keep an eye on how people are working with them—it may be that
your team does not find state diagrams useful to their way of working.
That is not a big problem; as always, you should remember to use the
mix of techniques that works for you.

If you do use state diagrams, don't try to draw them for every class in
the system. Although this approach is often used by high-ceremony
completists, it is almost always a waste of effort. Use state diagrams
only for those classes that exhibit interesting behavior, where building
the state diagram helps you understand what is going on. Many peo-
ple find that UI and control objects have the kind of behavior that is
useful to depict with a state diagram.

Where to Find Out More

Both Grady Booch (1994) and Jim Rumbaugh (1991) have material on
state diagrams, although neither contains much more detail than
appears in this chapter. The most detailed treatment of statecharts is in
Cook and Daniels (1994), a book I strongly recommend if you often use
statecharts. The semantics they define are much more detailed than in
other books. Although those semantics may not be entirely consistent
with UML semantics, the authors do go into detailed issues that you
should be aware of if you are using state diagrams. As a real-time
book, Douglass (1998) has a lot to say about state diagrams, including
information on how to implement them.



Chapter 9

Activity Diagrams

Activity diagrams are one of most unexpected parts of the UML.

Unlike most other techniques in the UML, the activity diagram doesn’t
have clear origins in the previous works of the three amigos. The activ-
ity diagram combines ideas from several techniques: the event dia-
grams of Jim Odell, SDL state modeling techniques, and Petri nets.
These diagrams are particularly useful in connection with workflow
and in describing behavior that has a lot of parallel processing.

In Figure 9-1, which comes from the UML 1.0 documentation, the core
symbol is the activity. The interpretation of this term depends on the
perspective from which you are drawing the diagram. In a conceptual
diagram, an activity is some task that needs to be done, whether by a
human or a computer. In a specification-perspective diagram or an
implementation-perspective diagram, an activity is a method on a
class.

Each activity can be followed by another activity. This is simple
sequencing. For example, in Figure 9-1, the Put Coffee in Filter activity
is followed by the Put Filter in Machine activity. So far, the activity dia-
gram looks like a flowchart. We can explore the differences by looking
at the Find Beverage activity.
129



130 CHAPTER 9 ACTIVITY DIAGRAMS
Figure 9-1: Activity Diagram
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Find Beverage has two triggers coming out of it. Each trigger has a
guard, a logical expression that evaluates to “true” or “false” just as on
a state diagram (see Chapter 8). In the case of Figure 8-1, the person
will follow the Find Beverage activity by thinking about coffee or cola.

We'll assume that we can find a bag of Peet’s New Guinea and go
down the coffee route. This trigger leads to a synchronization bar,
attached to which are three outgoing triggers. These triggers go to the
Put Coffee in Filter, Add Water to Reservoir, and Get Cups activities,
respectively.

The diagram says that these three activities can occur in parallel.
Essentially, this means that their order is irrelevant. I could put coffee
in the filter first, then add water to the reservoir, and then get the cups,
or I could get the cups, then add the coffee to the filter—you get the
picture.

I can also do these activities by interleaving. I could get a cup, add
some water to the reservoir, get another cup, get some more water, and
so forth. Or I could do some of this simultaneously: pour the water in
with one hand while I reach for a cup with another. Any of these is cor-
rect, according to the diagram.

The activity diagram allows me to choose what order in which to do
things. In other words, it merely states the essential sequencing rules I
have to follow. This is the key difference between an activity diagram
and a flowchart. Flowcharts are normally limited to sequential pro-
cesses; activity diagrams can handle parallel processes.

This is important for business modeling. Businesses often have unnec-
essarily sequential processes. A technique like this that encourages
parallel behavior is valuable in these situations because it encourages
people to move away from unnecessary sequences in their behavior
and to spot opportunities to do things in parallel. This can improve the
efficiency and responsiveness of business processes.

Activity diagrams are also useful for concurrent programs since you
can graphically lay out what threads you have and when they need to
synchronize.
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When you get parallel behavior, you need to synchronize. We don’t
want to turn on the coffee machine until we have put the filter in the
machine and water in the reservoir. This is why we see the outbound
triggers from these activities coming together in a synchronization bar.
A plain synchronization bar like this indicates that the outbound trig-
ger occurs only when both inbound triggers have occurred. As we will
see later, these bars can be more complicated.

A further synchronization occurs later: The coffee has to be brewed
and cups must be available before we can pour the coffee.

Now let’s move on to the other track.

In this case, we have a compound decision. The first decision is about
coffee, which governs the two triggers coming out of the Find Bever-
age. If there is no coffee, we are faced with a second decision, this one
based on cola.

When we have decisions like this, we mark the second decision with a
decision diamond. This allows us to describe nested decisions. We can
have any number of nested decisions.

The Drink activity has two triggers coming into it, which means that it
is performed in either case. For the moment, you can think of this as an
OR case (I do it if one trigger or the other occurs) and the synchroniza-
tion bar as the AND case (I do it if one trigger and the other occurs).

Activity Diagrams for Use Cases

Figure 9-1 describes a method on the type Person. Activity diagrams
are useful for describing complicated methods. They can also be used
elsewhere—for instance, to describe a use case.

Consider a use case for order processing.

When we receive an order, we check each line item on the
order to see if we have the goods in stock. If we do, we assign
the goods to the order. If this assignment sends the quantity
of those goods in stock below the reorder level, we reorder the
goods. While we are doing this, we check to see if the payment
is OK. If the payment is OK and we have the goods in stock,
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we dispatch the order. If the payment is OK but we don’t have
the goods, we leave the order waiting. If the payment isn’t
OK, we cancel the order.

See Figure 9-2 for a visual representation of this use case.

This figure introduces a new construct to the activity diagram. Take a
look at the incoming trigger associated with the Check Line Item activ-
ity. It is marked with a *. This is a multiplicity marker (the same
marker used in class diagrams; see Chapter 4) to show that when we
receive an order, we have to carry out the Check Line Item activity for
each line item on the order. This means that the Receive Order activity
is followed by one invocation of the Authorize Payment activity and
multiple invocations of the Check Line Item activity. All of these invo-
cations occur in parallel.

This highlights the second source of parallelism in an activity diagram.
You can get parallel activities through multiple transitions coming out
of a synchronization bar; you can also get parallel activities when the
same activity is triggered through a multiple trigger. Whenever you
have a multiple trigger, you should indicate on the diagram what the
basis of the trigger is, as in this case with [for each item on].

When you see a multiple trigger, you usually see a synchronization
bar, farther down in the diagram, that brings the parallel threads
together. In this case, we see this bar before the Dispatch Order activ-
ity. The synchronization bar has a condition applied to it. Each time a
trigger comes to the synchronization bar, the condition is tested. If the
condition is true, the outbound trigger occurs. (You can also use
another * to indicate the threads coming together. I prefer not to show
a second * as it makes the diagram too confusing. I find that the syn-
chronization condition makes things clear.)

Unlabeled synchronization bars work in the same way. The lack of a
condition means that the default condition for synchronization bars is
used. The default is that all incoming triggers have occurred. That's
why there were no conditions on the bars in Figure 9-1.



134 CHAPTER 9 ACTIVITY DIAGRAMS
Figure 9-2: Receiving an Order
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An activity diagram need not have a defined end point. The end point
of an activity diagram is the point at which all the triggered activities
have been run and there are no more left to do. On Figure 9-2, marking
an explicit end point would not be helpful.

Figure 9-2 also has a dead end: the Reorder Item activity. After this
activity is performed, nothing more happens. Dead ends are fine on a
non-terminating activity diagram like this. Sometimes, they are obvi-
ous, as for Reorder Item. At other times, they are not so obvious. Look
at the Check Line Item activity. It has only one outbound trigger,
which has a condition. What happens if the given line item isn’t in
stock? Nothing—the thread just stops there.

In our example, we cannot dispatch an order until we get an incoming
delivery that replenishes the stock. This might be a separate use case.

When a supply delivery comes in, we look at the outstanding
orders and decide which ones we can fill from this incoming
supply. We then assign each of these to its appropriate orders.
Doing this may release those orders for dispatching. We put
the remaining goods into stock.

Figure 9-3 is an activity diagram that represents this use case.

This second use case shows how the order can wait to be dispatched
until we get another delivery.

When each of two use cases shows part of the whole picture, I find it
useful to draw a combined diagram, like the one in Figure 9-4. This
diagram shows the activity diagrams for both use cases superimposed
on each other, so you can see how actions in one use case affect actions
in the other. Such an activity diagram has multiple start points, which
is perfectly fine as the activity diagram represents how the business
reacts to multiple external events.

I find this ability of activity diagrams to show behavior that spans
multiple use cases to be particularly helpful. Use cases give us slices of
information about a domain viewed from the outside; when we look at
the internal picture, we need to see the whole. Class diagrams (see
Chapter 4) show us the whole picture of interconnected classes, and
activity diagrams do the same for behavior.
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Figure 9-3: Receiving Supply
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Figure 9-4: Receive Order and Receive Supply
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Swimlanes

Activity diagrams tell you what happens, but they do not tell you who
does what. In programming, this means that the diagram does not
convey which class is responsible for each activity.

In domain modeling, this means that the diagram does not convey
which people or departments are responsible for each activity. One
way around this is to label each activity with the responsible class or
human. This works, but does not offer the same clarity as interaction
diagrams (see Chapter 6) for showing communication among objects.

Swimlanes are a way around this.

To use swimlanes, you must arrange your activity diagrams into verti-
cal zones separated by lines. Each zone represents the responsibilities
of a particular class or, in the case of Figure 9-5, a particular depart-
ment.

Swimlanes are good in that they combine the activity diagram’s depic-
tion of logic with the interaction diagram’s depiction of responsibility.
However, they can be difficult to draw on a complex diagram. I have
used non-linear zones on occasion, which is better than nothing.
(Sometimes you have to stop trying to say too much in one diagram.)

Some people make sure to assign activities to objects when they draw
an activity diagram. Others are happy to work with the activity dia-
gram first, to get an overall sense of the behavior, and assign the activ-
ities to objects later. I’ve seen people who assign immediately get
emotional about those who defer assignment; they make unpleasant
accusations of drawing dataflow diagrams and not being object-ori-
ented.

I confess I sometimes draw an activity diagram without assigning
behavior to objects until later. I find it useful to figure out one thing at
a time. This is particularly true when I’m doing business modeling and
encouraging a domain expert to think of new ways of doing things.
That way works for me. Others prefer to assign behavior to objects
immediately. You should do whatever you’re more comfortable doing.
The important thing is to assign activities to classes before you are
done. Often, I use an interaction diagram (see Chapter 6).
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Figure 9-5: Swimlanes
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Decomposing an Activity

An activity can be decomposed into further description. This descrip-
tion can be text, code, or another activity diagram (see Figure 9-6).

 

Figure 9-6: Decomposed Activity Diagram
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When you draw an activity diagram as a decomposition of a higher-
level activity, you must provide a single start point. You can, however,
provide as many end points as there are outgoing triggers within the
higher-level activity. This allows the subsidiary diagram to return a
value that determines later triggering. For instance, Figure 9-6 shows
the Authorize Credit Card activity, which returns either “succeeded”
or “failed.”

Figure 9-6 was drawn from a conceptual perspective, but it is not too
difficult to imagine drawing this as a graphical portrayal of program-
ming code, just like a flowchart. I tend not to do this, for the same rea-
son that I don’t draw flowcharts. It's usually easier to simply write the
code. If you find graphics useful here, you might try this, particularly
if you want to show multiple threads.

There are tools that can execute Odell’s event diagrams, a precursor to
activity diagrams. If you are using such a tool, you might find it valu-
able for prototyping.

If you have a lot of logic to represent, activity diagrams can easily
become too tangled. In this situation, a truth table can be a better rep-
resentation.

When to Use Activity Diagrams

Like most behavioral modeling techniques, activity diagrams have
definite strengths and weaknesses, so they are best used in combina-
tion with other techniques.

The great strength of activity diagrams lies in the fact that they sup-
port and encourage parallel behavior. This makes them a great tool for
workflow modeling and, in principle, for multi-threaded program-
ming. Their great disadvantage is that they do not make the links
among actions and objects very clear.

You can define what a relationship is by labeling an activity with an
object name or by using swimlanes (which divide an activity diagram
based on responsibilities), but this does not have the simple immedi-
acy of interaction diagrams (see Chapter 6). For this reason, some peo-
ple feel that using activity diagrams is not object-oriented and, thus,
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bad. I’ve found that the technique can be very useful, and I don’t
throw useful tools out of my toolkit.

I like to use activity diagrams in the following situations.

• Analyzing a use case. At this stage, I’m not interested in allocating
actions to objects; I just need to understand what actions need to
take place and what the behavioral dependencies are. I allocate
methods to objects later and show those allocations with an inter-
action diagram.

• Understanding workflow across many use cases. When use cases inter-
act with each other, activity diagrams are a great tool for represent-
ing and understanding that behavior. In situations that are
dominated by workflow, I find them a superb tool.

• Dealing with multi-threaded applications. I have not used activity dia-
grams for this purpose, but they are well-suited to it.

Don’t use activity diagrams in the following situations.

• Trying to see how objects collaborate. An interaction diagram is sim-
pler and gives you a clearer picture of collaborations.

• Trying to see how an object behaves over its lifetime. Use a state dia-
gram (see Chapter 8) for that.

Where to Find Out More

Activity diagrams are based on a number of workflow-oriented
approaches. The most immediate ancestor is Jim Odell’s event dia-
gram, which you can find out more about in Martin and Odell’s “foun-
dations” book (1994).
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Deployment 
Diagrams

A deployment diagram shows the physical relationships among soft-
ware and hardware components in the delivered system. A deploy-
ment diagram is a good place to show how components and objects
are routed and move around a distributed system.

Each node on a deployment diagram represents some kind of compu-
tational unit—in most cases, a piece of hardware. The hardware may
be a simple device or sensor, or it could be a mainframe.

Figure 10-1 shows a PC connected to a UNIX server through TCP/IP.
Connections among nodes show the communication paths over which
the system will interact.

Components on a deployment diagram represent physical modules of
code. In my practice, these correspond exactly to the packages on a
package diagram (see Chapter 7), so the deployment diagram shows
where each package is running on the system.

The dependencies among the components should be the same as the
package dependencies. These dependencies show how components
communicate with other components. The direction of a given depen-
dency indicates the knowledge in the communication.
143
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Figure 10-1: Deployment Diagram
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So in the diagram, the Liver Unit UI is dependent on the Liver Unit
Client Facade since it calls specific methods on the facade. Although
the communication is two-way, in the sense that the Facade returns
data, the Facade is not aware of who is calling it and is thus not depen-
dent on the UI. In the communication between the two Health Care
Domain components, both are aware that they are talking to another
Health Care Domain component, so the communication dependency
is two-way.

A component may have more than one interface, in which case you
can see which components communicate with each interface. On Fig-
ure 9-1, the PC contains two components: the UI and the application
facade. The application facade talks to the application interface of the
server application. A separate configuration component runs only on
the server. The application communicates with its local Health Care
Domain component, which may communicate with other Health Care
Domain components on the network.

The use of multiple Health Care Domain components is hidden from
the application. Each Health Care Domain component has a local data-
base.

When to Use Deployment Diagrams

In practice, I haven’t seen this kind of a diagram used much. Most peo-
ple do draw diagrams to show this kind of information, but they are
informal cartoons. On the whole, I don't have a problem with that
since each system has its own physical characteristics that you want to
emphasize. As we wrestle more and more with distributed systems,
however, I'm sure we will require more formality as we understand
better which issues need to be highlighted in deployment diagrams.
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Chapter 11

UML and 
Programming

So far, I have discussed a lot of notation. One large question looms:
How does a programmer actually use the UML as part of the daily
grind of programming? I’ll answer this by talking about how I use the
UML when I’m programming, even on a small scale. I won’t go into a
lot of detail, but I hope this will give you a sense of what you can do
with the UML.

Let’s imagine a computer system designed to pull together informa-
tion about patients for a hospital.

Various health care professionals make observations about patients.
This simple system will allow someone to get information about those
observations and add additional observations. As this is a short book, I
will wave my arms about the database links and the UI and only con-
sider the basic domain classes.

This is such a simple example that it has but a single use case, named
“review and add patient observations.” We can elaborate on that with
a few scenarios.

• Ask for the latest heart rate of a patient.
• Ask for the blood group of a patient.
147
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• Update a patient’s level of consciousness.
• Update a patient’s heart rate. The system marks the rate as slow,

normal, or fast, according to the system’s built-in ranges.

My first step in the process is to come up with a conceptual model that
describes the concepts in this domain. At this stage, I’m not thinking
about how the software is going to work, only about how to organize
concepts in the minds of the doctors and nurses. I'll start with a model
based on several analysis patterns from Fowler (1997): Observation,
Quantity, Range, and Phenomenon with Range.

Patient Observation: Domain Model

Figure 11-1 shows the initial domain model for our system.

How do these concepts represent the information in the domain?

I’ll start with the simple concepts of Quantity, Unit, and Range. Quan-
tity represents a dimensioned value, such as 6 feet—a quantity with
amount of 6 and unit of feet. Units are simply those categories of mea-
surement with which we want to deal. Range allows us to talk about
ranges as a single concept—for instance, a range of 4 feet to 6 feet is
represented as a single Range object with an upper bound of 6 feet and
a lower bound of 4 feet. In general, ranges can be expressed in terms of
anything that can be compared (using the operators <, >, <=, >=, and
=), so the upper and lower bounds of a Range are both magnitudes.
(Quantities are a kind of magnitude.)

Each observation made by a doctor or nurse is an instance of the
Observation concept and is either a Measurement or a Category
Observation. So a measurement of a height of 6 feet for Martin Fowler
would be represented as an instance of Measurement. Associated with
this Measurement are the amount 6 feet, the Phenomenon Type
“height,” and the Patient named Martin Fowler. Phenomenon Types
represent the things that can be measured: height, weight, heart rate,
and so forth.
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Figure 11-1: Patient Observation Domain Model
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An observation that Martin Fowler's blood type is O would be repre-
sented as a Category Observation whose associated Phenomenon is
“blood group O.” This Phenomenon is linked to the Phenomenon
Type “blood group.”

Figure 11-2 should make things a little clearer at this point.

Figure 11-2: Patient Observation Object Diagram
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Figure 11-3: Another Patient Observation Object Diagram
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can use parameterized types in C++. For this exercise, I prefer to use a
QuantityRange class that uses the Range pattern.

My problem with Observation is that an Observation can be both a
Category Observation and a Measurement at the same time (see Figure
11-3). In Java, like most other programming languages, we have only
single classification. I decided to deal with this by allowing any Obser-
vation to have an associated Phenomenon, which effectively lets the
Observation class implement both the Observation and Category
Observation concepts.

These decisions do not result in a perfect state of affairs, but they are
the kind of pragmatic imperfection that allows work to get done. Don’t
try to do software that exactly maps the conceptual perspective. Try,
instead, to be faithful to the spirit of conceptual perspective but still
realistic considering the tools you are using.

Patient Observation: Specification Model

Figure 11-4 reflects modifications I made to the domain model to take
into account some of the factors associated with a target language.

The patient observation model is now at the specification perspective.
It shows the class interfaces rather than the classes themselves. I might
keep the conceptual model for another day but, more likely, I will
work only with the specification model from this point forward. I try
not to keep too many models around. My rule of thumb is that if I can-
not keep a model up to date, it goes in the bin. (I know I’m lazy, too!)

Now let’s look at the behavior associated with our patient observation
model.

The first scenario asks for the latest heart rate of the patient. The first
question is: Whose responsibility is it to handle this request? The
Patient seems the natural choice. The Patient needs to look at all its
observations, determine which are measurements of the Phenomenon
Type “heart rate,” and find the latest value. To do this, I will have to
add a timepoint to Measurement. Because this can apply to other
observations, as well, I’ll add it to Observation, too.
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Figure 11-4: Patient Observation Specification Model

A similar responsibility exists for Phenomenon: Find the latest Cate-
gory Observation that has a Phenomenon for the given Phenomenon
Type.

Figure 11-5 shows operations that I’ve added to Patient to reflect my
thinking.

Don’t try too hard to come up with operations if they are not obvious
just yet. The most important thing to go for is a statement of responsi-
bility. If you can cast that in the form of an operation, that’s fine; other-
wise, a short phrase is useful in describing the responsibility.

Measurement

amount:Quantity

Observation

Patient

Phenomenon

range:QuantityRange

Phenomenon
Type 1 *

0..1

*

0..1 *

*

1
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Figure 11-5: Patient Observation Operations

Updating the patient’s level of consciousness involves creating a new
Observation of the appropriate Phenomenon. In doing that, the user
would usually like to pick a Phenomenon from a pop-up list of some
kind. We can handle that by getting the Phenomenon objects associ-
ated with a particular Phenomenon Type as this responsibility is
implied by the association between the two.

Measurement

amount: Quantity

Observation

Patient

Phenomenon

range:QuantityRange

Phenomenon
Type 1 *

0..1

*

0..1 *

*

1

timepoint

latestAmountOf (Phenomenon Type) : Quantity
phenomenonOf (Phenomenon Type) : Phenomenon
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In adding a measurement, we need to create a new Measurement.
Some additional complication comes from the fact that the Measure-
ment needs to look to see if there is a Phenomenon that can be
assigned. Here the Measurement can ask its associated Phenomenon
Type if there is a Phenomenon to assign.

There is some collaboration among the objects here, which suggests
that this is a good place for a sequence diagram (see Figure 11-6).

Do you have to draw all of these diagrams?

Not necessarily. Much depends on how well you can visualize what is
going on and how easy it is to work in your programming language.
In Smalltalk, it’s often just as easy to write the code as it is to think
with the diagrams. With C++, the diagrams are more useful.

The diagrams don’t have to be works of art. I usually sketch them out
on a paper pad or a small whiteboard. I transfer them to a drawing
tool (or CASE tool) only if I think it’s worth the effort of keeping them
up to date because they help clarify the behavior of the classes. At this
point in a project, I might also use CRC cards (see page 64) in addition
to or instead of the diagrams I’ve been describing in this chapter.

Moving to Code

Now we can take a look at some of the code that implements the ideas
I discussed in the previous sections. I'll begin with Phenomenon Type
and Phenomenon since they are quite closely linked.

The first thing to think about is the association between them: Should
the interface allow navigability in both directions? In this case, I think
so because both directions will be valuable and they are closely linked
concepts, in any case. Indeed, I am happy to implement the association
with pointers in both directions, too. I shall make it an immutable
association, however, as these are objects that are set up and then left
alone—they are not modified often, and when they are, we can create
them again.
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Figure 11-6: Patient Observation Sequence Diagram

a Measurement
heart rate : 

Phenomenon Type
slow heart rate : 

Phenomenon
normal heart rate : 

Phenomenon

new

findPhenomenon()

includes (Quantity)

false

includes (Quantity)

true

normal heart rate
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Some people have trouble with two–way links. I don’t find them trou-
blesome if I ensure that one class takes the overall responsibility for
keeping the link up to date, assisted by a “friend” or helper method, as
necessary.

Let's look at some declarations.

public class PhenomenonType extends DomainObject {

public PhenomenonType(String name) {
super(name);
};

void friendPhenomenonAdd(Phenomenon newPhenomenon) {
// RESTRICTED: only used by Phenomenon
_phenomena.addElement(newPhenomenon);
};

public void setPhenomena(String[] names) {
for (int i = 0; i < names.length; i++)
new Phenomenon(names[i], this);

};

public Enumeration phenomena() {
return _phenomena.elements();
};

private Vector _phenomena = new Vector();

private QuantityRange _validRange;

}

I use the convention of adding an underscore before all fields. It helps
me avoid getting my names confused.

public class Phenomenon extends DomainObject {

public Phenomenon(String name, PhenomenonType type) {
super (name);
_type = type;
_type.friendPhenomenonAdd(this);
};
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public PhenomenonType phenomenonType() {
return _type;
};

private PhenomenonType _type;

private QuantityRange _range;

}

package observations;

public class DomainObject {

public DomainObject(String name) {
_name = name;
};

public DomainObject() {};

public String name() {
return _name;
};

public String toString() {
return _name;
};

protected String _name = "no name";

}

I’ve added a DomainObject class, which knows about names and will
do any other behavior that I want all of my domain classes to do.

I can now set up these objects with code along the lines of the follow-
ing.

PhenomenonType sex =

new PhenomenonType(“gender”).persist();

String[] sexes = {“male”, “female”};

sex.setPhenomena(sexes);
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The persist() operation stores the Phenomenon Type in a registry
object so that you can get it again later with a static get() method. I'll
skip the details of that.

Next, I’ll put in the code to add observations to a patient. Here I don’t
want all the associations to be two-way. I have the patient hang on to a
collection of observations since the observations are used in the con-
text of a patient.

public class Observation extends DomainObject {

public Observation(Phenomenon relevantPhenomenon,
Patient patient, Date whenObserved) {
_phenomenon = relevantPhenomenon;
patient.observationsAdd(this);
_whenObserved = whenObserved;

};

private Phenomenon _phenomenon;

private Date _whenObserved;

}

public class Patient extends DomainObject {

public Patient(String name) {
super(name);
};

void observationsAdd(Observation newObs) {
_observations.addElement(newObs);
};

private Vector _observations = new Vector();

}

With this I can create observations.

new Patient("Adams").persist();

new Observation(PhenomenonType.get(“gender”).

phenomenonNamed(“male”), Patient.get(“Adams”),
new Date (96, 3, 1) );
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class PhenomenonType {

public Phenomenon phenomenonNamed(String name) {
Enumeration e = phenomena();
while (e.hasMoreElements() )
{
Phenomenon each = (Phenomenon)e.nextElement();
if (each.name().equals(name))
return each;

};

return null;
}

After creating observations, I need to be able to find the latest phenom-
enon.

class Patient

public Phenomenon phenomenonOf
(PhenomenonType phenomenonType)
{
return (latestObservation(phenomenonType) ==
null ? new NullPhenomenon() :
latestObservation(phenomenonType).phenomenon() );

}

private Observation
latestObservation(PhenomenonType value) {
return latestObservationIn(observationsOf(value) ); 
}

private Enumeration
observationsOf(PhenomenonType value) {
Vector result = new Vector();
Enumeration e = observations();
while (e.hasMoreElements() )
{
Observation each = (Observation) e.nextElement();
if (each.phenomenonType() == value)
result.addElement(each);

};
return result.elements();
}
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private Observation latestObservationIn
(Enumeration observationEnum) {
if (!observationEnum.hasMoreElements() )
return null;
Observation result =
(Observation)observationEnum.nextElement();
if (!observationEnum.hasMoreElements() )
return result;

do
{
Observation each =
(Observation)observationEnum.nextElement();
if (each.whenObserved().
after(result.whenObserved() ) )
result = each;

}

while (observationEnum.hasMoreElements() );

return result;
}

class Observation

public PhenomenonType phenomenonType() {
return _phenomenon.phenomenonType();
}

There are several methods that combine to do this. You could draw a
diagram to show this, but I tend not to bother. The way I decompose a
method has more to do with refactoring (see page 30) than it does with
prior design.

We can now look at adding the behavior for measurements.

First, let’s see the definition of the Measurement class and its construc-
tor.

public class Measurement extends Observation {

public Measurement(Quantity amount,
PhenomenonType phenomenonType,
Patient patient, Date whenObserved) {
initialize (patient, whenObserved);
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_amount = amount;
_phenomenonType = phenomenonType;
};

public PhenomenonType phenomenonType() {
return _phenomenonType;
};

public String toString() {
return _phenomenonType + “: “ + _amount;
};

private Quantity _amount;

private PhenomenonType _phenomenonType;

}

class Observation

protected void initialize(Patient patient,
Date whenObserved) {
patient.observationsAdd(this);
_whenObserved = whenObserved;

}

Note that a class diagram gives us a good start on developing this.

We again need the latest measurement.

Class Patient

public Quantity latestAmountOf(PhenomenonType value) {
return ((latestMeasurement(value) == null) ) ?
new NullQuantity():latestMeasurement(value).amount();
}

private Measurement
latestMeasurement(PhenomenonType value) {
if (latestObservation(value) == null)
return null;
if (!latestObservation(value).isMeasurement() )
return null;
return (Measurement)latestObservation(value);

}
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In both of these cases, the class diagram suggests basic structure and
we add behavior to it to support more interesting queries.

At this stage, we could describe our position with the specification-
perspective class diagram shown in Figure 11-7.

Take a look at how this diagram stresses interface over implementa-
tion. I’ve modeled the role from Phenomenon Type to Phenomenon as
a qualified role because that’s the primary interface on Phenomenon
Type. Similarly, I’ve shown Observation with a link to Phenomenon
Type because the interface exists there, even though the measurement
is the only one with a direct pointer to Phenomenon.

Looking at this diagram, we can see that the only difference between
Measurement and Observation is that Measurement has a quantity. We
could remove the Measurement class entirely from the specification
model by allowing any observation to have a (potentially null) quan-
tity.

We could still have a separate Measurement class, which would have
amount and phenomenon type fields, but nobody outside the package
would be aware of the class's existence. We would need to add Factory
methods (Gamma et al. 1994) either on Observation or on Patient to
allow the appropriate class to be created.

I will leave that change as an exercise for the reader and move on to
assigning a Phenomenon automatically for a Measurement.

Figure 11-7 illustrates the general process.

First, we need to add a method call to Measurement's constructor.

Class Measurement

public Measurement (Quantity amount,
PhenomenonType phenomenonType,
Patient patient, Date whenObserved)
initialize (patient, whenObserved);
_amount = amount;
_phenomenonType = phenomenonType;
_phenomenon =  calculatePhenomenonFor(_amount);



164 CHAPTER 11 UML AND PROGRAMMING
Figure 11-7: Another Patient Observation Specification Model

This delegates the task to Phenomenon Type.

Class Measurement

public Phenomenon calculatePhenomenonFor(Quantity arg) 
{
return _phenomenonType.phenomenonIncluding(arg);
}

Measurement

amount:Quantity

Observation

Patient

Phenomenon

range:QuantityRange

Phenomenon
Type

0..1

0..1 *
*

1

timepoint

latestAmountOf (Phenomenon Type) : Quantity
phenomenonOf (Phenomenon Type) : Phenomenon

1

*

String

0..1
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This asks each phenomenon in turn.

Class PhenomenonType

public Phenomenon phenomenonIncluding (Quantity arg) {
Enumeration e = phenomena();
while (e.hasMoreElements())
{
Phenomenon each = (Phenomenon) e.nextElement();
if (each.includes(arg))
return each;

};

return null;
}

Class Phenomenon

public boolean includes (Quantity arg) {
return (_range == null ? false:_range.includes(arg));
}

The code flows out well from the sequence diagram. In practice, I usu-
ally use a sequence diagram to rough out the interaction and then
make some changes as I code it. If the interaction is important, I will
update the sequence chart as part of my documentation. If I think the
sequence chart will not add much clarity to the code, I file the rough
sequence chart in the circular filing cabinet.

This is a brief example of how to use the UML with a programming
language, but it should give you a good idea of the process. You don’t
have to be on a high-ceremony project to find using bits of the UML
handy. You don’t have to use all of it, just the bits you like.

Sketching out a design with a class diagram and an interaction dia-
gram can help get your thoughts in order and make it easier to code. I
think of these sketches as fast prototypes. You don’t have to hold on to
the diagrams later, but you may find it easier for yourself and others to
understand the code if you do.

You don’t need a fancy and expensive CASE tool. A whiteboard and a
simple drawing tool on your computer will do fine. Of course there are
useful CASE tools, and if you are involved in a larger project, you
might consider getting one.
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If you do, compare it to the baseline of a simple drawing tool and a
word processor (it’s amazing how much you can do with Visio and
Word, for instance). If the tool has code generation, look carefully at
how it generates code. Code generation forces the CASE tool to take a
very particular interpretation of the diagrams, which will affect the
way you draw the diagrams and what the diagrams mean.

I’ve done medium-size projects in which we started with a CASE tool
and ended up throwing it away. Don't be afraid to do that if you find
the tool isn’t helping.

You can find more about this example via my Web site (<our-
world.compuserver.com/homepages/Martin_Fowler>). The version
of the example at the site goes more deeply into some of the layering
issues involved in getting this model to a user interface.



Appendix A

Techniques and Their 
Uses

Technique Purpose

Activity Diagram Shows behavior with control structure. Can 
show many objects over many uses, many 
objects in single use case, or implementation 
of method. Encourages parallel behavior.

Class Diagram Shows static structure of concepts, types, 
and classes. Concepts show how users think 
about the world; types show interfaces of 
software components; classes show imple-
mentation of software components.

CRC Cards Helps get to essence of class’s purpose. 
Good for exploring how to implement use 
case. Use if getting bogged down with 
details or if learning object approach to 
design.

Deployment
Diagram

Shows physical layout of components on 
hardware nodes.
167
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Design by Contract Provides rigorous definition of operation’s 
purpose and class’s legal state. Encode these 
in class to enhance debugging.

Interaction Diagram Shows how several objects collaborate in 
single use case.

Package Diagram Shows groups of classes and dependencies 
among them.

Patterns Offers useful bits of analysis, design, and 
coding techniques. Good examples to learn 
from; starting point for designs.

Refactoring Helps in making changes to working pro-
gram to improve structure. Use when code is 
getting in the way of good design.

State Diagram Shows how single object behaves across 
many use cases.

Use Case Elicits requirements from users in meaning-
ful chunks. Construction planning is built 
around delivering some use cases in each 
iteration. Basis for system testing.

Technique Purpose
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object diagram, examples   150, 151
Object Management Group (OMG)   xvi-

ii, 1, 3, 4, 6
Object Modeling Technique (OMT)

See OMT
Objectory   2, 4, 14, 19, 35, 41, 43
observable state   67
Observation pattern   148
Odell, Jim   xvii, xviii, 3, 4, 9, 11, 57, 59, 69,

74, 77, 84, 129, 141, 142, 174
OMT   1, 3, 84, 121
Opaque stereotype   116
Opdyke, William   32, 175
operation

defined   63, 67
notation   64

optimization   40
Ordered constraint   90

P
package   114
package diagrams   10, 23, 34, 143, 168

defined   114
examples   115, 117
when to use   119

package visibility   101, 116
parameterized class

defined   96
example   97

patterns   8, 10, 12, 35, 168
defined   36
See also Analysis patterns

See also Design patterns
when to use   39

perspective, types   55
Petri nets   129
Phenomenon with Range pattern   148
plan

adding to during iterative develop-
ment   33

building   26
political risk

dealing with   25
defined   17

post-condition   70
pre-condition   71
private visibility

in C++   100
in Smalltalk   100

process
defined   1
overview   14
phases   15

protected visibility
in C++   100
in Java   101

prototyping   22, 141
Proxy pattern   37
public visibility

in C++   100
in Java   101
in Smalltalk   100

Q
qualified association

defined   91
example   92

Quantity pattern   148
query   67

R
Range pattern   99, 148, 152
Rational Unified Process 2, 13, 14, 19, 35,

42
Rational Software   3, 4, 42
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Read Only constraint   90
realization   50
Recursive Design   2
refactoring   30, 161, 168

defined   31
principles   31
when to use   32

Refactory   32
reference object   88
refinement   88

defined   86
requirements risk

dealing with   17
defined   17

responsibility   65
Responsibility-Driven Design   3
return   105, 172
risk

categories   17
dealing with   17, 22, 23, 25

Roberts, Don   32
role   57, 172
Role Models pattern   80
Rubin, Kenneth S.   41, 174
Rumbaugh, Jim   xv, xvii, 1, 3, 4, 11, 57,

59, 80, 121, 128, 175
See also Three amigos

S
scenario   50
Scenario pattern   38
schedule risk   27
SDL   129
self-delegation

consequences   108
defined   105

self-transition   125
sequence diagram   165

comparing to collaboration diagram
111

defined   104
examples   104, 107, 109, 156

setting method   67
Shlaer, Sally   2, 57, 59, 175
Siemens   112

single classification   77
skills risk

dealing with   23
defined   17

source   57
specification perspective

activities   129
associations   58
attributes   63
defined   55
derived associations   84
derived attributes   84
examples   153, 154, 164
generalization   68
operations   63
qualified associations   92, 93
refinement   86
subclassing   86
subtyping   118
when to use   74

state diagrams   20, 35, 112, 142, 168
defined   121
examples   122, 124, 125, 126
when to use   128

statechart   121
static classification   79
stereotype

as extension mechanism   9
defined   76
notation   76

stereotypes
bind   98
history   95, 96
interface   86
opaque   116
transparent   116
type   86

STL   99
subclassing   69, 72, 85, 88
substitutability

and assertions   72
defined   68

subtype   53
subtyping   69, 98
superstate   123, 125
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defined   138
examples   139

synchronization bar   131
system interactions   44

T
target   57
technological risk

dealing with   22
defined


