
How to Assemble Conforming Finite Elements on Grids with

Hanging Nodes

Peter Bastian

October 21, 2005

1 Detecting Hanging Nodes

Figure 1 (left) shows a simple two-dimensional grid with hanging node refinement. How do we
detect hanging nodes (denoted by ¤ in the figure)?
Let Th = {e0, . . . , eK−1} denote the (nonconforming) leaf finite element grid. The corre-

sponding set of vertices is denoted by Nh = {v0, . . . , vN−1}. Here, Nh includes all vertices of the
grid, i. e. also the hanging nodes. Moreover, we denote by N(e) the set of vertices of element
e and by E(v) = {e ∈ Th | v ∈ N(e)} the set of all elements incident at v. Due to the hierar-
chical grid construction every element e ∈ Th is assigned a unique level number l(e). With that
notation in place we define the function S : Nh → N as

S(v) = min{l(e) | e ∈ E(v)}. (1)

The numbers S(v) are shown in the vertices in figure 1.
Let λ = (e, e′) be the directed intersection of elements e and e′. In the grid interface the

set of intersections that any element e has with any other element are available. Note that for
any λ = (e, e′) it is defined that l(e) ≥ (e′), i. e. the higher level leaf element “knows” its lower
level neighbero but not vice versa. For any intersection λ = (e, e′) we define N(λ) as the set
of vertices that are incident at the intersection viewed from element e. This assumes that the
intersection always corresponds to a face of e when l(e) > l(e′). Now, hanging nodes H ⊆ Nh

can be characterized as follows:

v ∈ H ⇔ ∀e ∈ E(v) : ∃λ = (e, e′) : l(e) > l(e′) ∧ v ∈ N(λ) ∧ S(v) = l(e). (2)

Note that the set H can be determined without extending the grid interface.
Figure 1 (right) shows an example for a grid with conforming red-green refinement. Addi-

tional copies of elements (“yellow refinement”) are used for purposes not of importance here.
The rule above determines H = ∅ because at conforming intersection λ = (e, e′) with l(e) > l(e′)
the vertices v ∈ N(λ) cannot be hanging because S(v) ≤ l(e′) < l(e).

2 Conforming Finite Elements

Although the grid with hanging node refinement is nonconforming the finite element discretiza-
tion employed on such meshes is nonconforming. We illustrate this here for piece-wise (bi-, tri-)
linear finite elements. In most existing codes with hanging nodes the finite element discretiza-
tion is combined with a gemoetric multigrid solver. This means that the matrix corresponding
to the grid Th is never formed explicitely (only matrices corresponding to the levels are formed).
Here, we concentrate on forming a finite element discretization on the “leaf” grid Th.

1

PSfrag replacements
1

1

11

1 1

11

1

1

1

2

2

2

2

2

2

22

33

33

3

3

3 3

33

4

λ = (e, e′)

e
e′

PSfrag replacements

1

2

333

3 33

3 3

3

3

3

3

3

3

4

4

4

4

4

4 4

444

4

4

4

4

4

4

4

4

4

4

4

4

4
4

λ = (e, e′)

e

e′

Figure 1: Two-dimensional grid with hanging nodes (left) and without hanging nodes (right).
Elements are tagged with level number and vertices v with S(v) defined in the text.

2.1 Characterization via Hierarchical Basis

The easiest way to characterize the conforming finite element space is via a hierarchical basis.
Observe that for any vi ∈ Th, if we omit the mesh levels l > S(vi), the situation is conforming,
i. e. vertex vi is completely surrounded by elements with level S(vi). With vi we associate the

standard nodal basis function φ
S(v)
i where superscript denotes the mesh level. Now assume that

vertices are numbered in such a way that hanging nodes are numbered last:

Nh = {v0, . . . , vM−1
︸ ︷︷ ︸

v∈Nh\H

, vM , . . . , vN−1
︸ ︷︷ ︸

v∈H

}. (3)

Then the conforming hierarchical basis is

Φ̂ = {ϕ̂
S(vi)
i | 0 ≤ i < M} (4)

and the corresponding conforming finite element space is

Vh = span Φ̂. (5)

For assembling the stiffness matrix this basis can not be recommended because it introduces
additional fill-in which is complicated to handle.

2.2 Conforming Composite Basis

We define the finite element space consisting of discontinuous piecewise polynomials:

Dh = {w ∈ L2(Ω) | w|e ∈ Q1 (or P1) }, (6)

where Q1 = {u | u =
∑

α x
α, αi ≤ 1} and P1 = {u | u =

∑

α x
α,
∑

i αi ≤ 1}. For every vertex
vi ∈ Nh (i. e. also hanging nodes) we define ψi ∈ Dh as follows:

∀e ∈ E(vi), vj ∈ N(e) : ψi|e(xj) = δij , ∀e ∈ Th \ E(vi) : ψi|e = 0. (7)

2

PSfrag replacements 0

0000

0

00

0 0

0 0

0

0

0 0

00

0 0

0

0 0

0

11

1 1

1

2

viPSfrag replacements

00

0 0

00

0 0

0

0 0

0 0

00

0 0

00

0 0

00

0 0

01 1

1

2

vi

PSfrag replacements

0 0

0

0

0 0

0

0 0

0

0

0

0000

0

00

0 1

11

1
1

2

1

2

1

2

1

2

vi

Figure 2: The discontinuous piecewise linear functions ψi for two vertices (left and middle figure)
and a composite continuous basis function ϕi.

Examples of such functions are shown in the left and middle sketch in figure 2.
For each non-hanging node vi we combine ψi with appropriately scaled functions ψk of

neighboring hanging nodes to arrive at a conforming basis function ϕi: function :

∀0 ≤ i < M : ϕi = ψi +
N−1∑

k=M

αikψk. (8)

The factors αik are determined as follows: Let e ∈ Th be an element with non-hanging node
vi and and hanging node vk, then αik is the evaluation of the element shape function φ

f
i at

position xk on the father element f of e. This the evaluation is completely local and uses only
the method geometryInFather(). The result of this construction is shown for the center node
in the right sketch in figure 2.
This defines the conforming composite nodal basis

Φ = {ϕi | 0 ≤ i < M}. (9)

It remains to show that spanΦ = Vh. The finite element problem now reads (as usual): Find
u ∈ Vh : a(u, v) = l(v) ∀v ∈ Vh. Using the composite basis we get for u:

u =
M−1∑

j=0

xjϕj =
M−1∑

j=0

xj

(

ψj +
N−1∑

k=M

αjkψk

)

=
M−1∑

j=0

xjψj +
N−1∑

k=M





M−1∑

j=0

αjkxj





︸ ︷︷ ︸

=:xk

ψk =
N−1∑

j=0

xjψj .

(10)
By introducing the coefficients xj ,M ≤ j < N formally as unknowns we can write u in the
simpler basis functions ψj .
The discrete problem now reads







a

(
N−1∑

j=0
xjψj , ϕi

)

= l(ϕi) 0 ≤ i < M

xi =
M−1∑

j=0
αjixj M ≤ i < N

. (11)

3

Inserting the expression for ϕi and using linearity we arrive at







N−1∑

j=0
xj

(

a(ψj , ψi) +
N−1∑

k=M

αika(ψj , ψk)

)

= l(ψi) +
N−1∑

k=M

αikl(ψk) 0 ≤ i < M

xi =
M−1∑

j=0
αjixj M ≤ i < N

. (12)

Thus the matrix entries are as follows

0 ≤ i < M : (A)ij = a(ψj , ψi) +
N−1∑

k=M

αika(ψj , ψk) (13)

M ≤ i < N, 0 ≤ j < M : (A)ij = αji (14)

M ≤ i, j < N : (A)ij = δij (15)

Note that the sparsity pattern is not extended compared to the standard case (connections are
determined by N(e), e ∈ Th), thus the setup phase of the matrix works as before. The matrix
entries are computed from the entries of the standard local stiffness matrix only the accumulation
to the global matrix and the evaluation of the αji factors is new.
To do: Think about the parallel case.

4

	Detecting Hanging Nodes
	Conforming Finite Elements
	Characterization via Hierarchical Basis
	Conforming Composite Basis

