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Abstract: The Ernst-Mach-Institute (EMI) of the Fraunhofer-Society is dealing with a wide spectrum of subjects 

in the fields of applied physics, mechanical and civil engineering. The EMI department for numerical simulation 

supports the institute and the external customers with the high-performance software applications in the fields of 

compressible flows, structural dynamics, electro dynamics and multi-disciplinary couplings of these 

applications. A majority of the in-house codes is written in FORTRAN 95 for efficiency reasons. Nevertheless, 

potential benefits of object-oriented programming in C++ are recognized. Performance studies for numerical 

simulations in terms of explicit finite element methods have shown that FORTRAN provides much better 

efficiency than C++. Here we analyze the factors contributing to the code performance for the explicit finite 

volume scheme and present pro and contras of possible C++ solutions. 

Introduction 

The numerical solution of partial differential equations (PDEs) requires spatial and 

temporal discretization with subsequent solution of a large algebraic system of equations. 

Solution algorithms based on the cell-centered finite volume method (FVM) has recently been 

the subject of considerable research in field of computational fluid dynamics, because the FV-

numerical model can be directly derived from integral form of conservative equation and 

designed for quite various grids: structured and unstructured, Cartesian and body-fitted 

(curvilinear), stationary and moving/deforming. Finite volume methods are traditionally 

divided in two groups: explicit and implicit ones, according to the way of discretization used 

for the time derivative. Implicit schemes offer numerical stability at the extra cost of having to 

deal with the resolution of an algebraic system with as many unknowns as grid cells at any 

time step requiring inversion of a large scale matrix spread over the whole grid. The principal 

idea of explicit FVM (eFVM) is evaluation of characteristic variables at a future time in every 

single gird cell in terms of these variables known at the former time step. Here no matrix 

inversion is needed, but a smaller time step is required. The allowed time step size of explicit 

FVM is restricted by stability reasons to fulfill the Courant-Friederichs-Levy (CFL) condition. 

Contrarily to implicit schemas, the explicit schemes tend to require fewer computations per 

time step, but the time saved on a per-time-step basis can be lost on per-simulation-period 

basis because the time step is constrained by CFL condition. For further details we refer the 

reader to [Ref. 1-3]. 

Multi-purpose solver: requirements to implementation 

The advantages of object-oriented programming for implementation of the explicit 

FVM have been especially revealed by the need to develop a multi-purpose solver. The multi-

purpose solution assumes an ensemble playing of distinct physical models specified on the 

system of complex geometry within one solution phase. Thus, the multi-purpose solver is a 
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software application with implemented heterogeneous physical model spread over the 

macrogrid based on non-uniform fine meshes. Thus, the architecture and the choice of the 

underlying data structures are constrained by complete physics and topology of the system. 

Thereby the mathematical formulation of each single physical model is based on the same 

flow equation written for a volume domain V with boundary surface A in an integral form as 

following:   

𝐷

𝐷𝑡
 𝑈 𝑑𝑡
𝑉

=  𝐹𝑛  
𝐴

 𝑑𝐴 +   𝑆𝑑𝑉
𝑉

  (1) 

Here 
𝐷

𝐷𝑡
 is material time derivative, U is solution variable in conservative form, 𝑛   is outgoing 

unit normal vector, 𝐹 is a total flux through the domain surface A, and S is the source term. 

As follows from Eqn. (1), flexible and easy definition of each physical model is possible 

through specification of U, F and S. Design of the grid consisting of zones with quite different 

U, F and S definitions is required for development of the multi-purpose solver. In addition, 

spacing of the macrogrid determines the accuracy and the cost of calculations. Diffizil grid 

areas (caused by shocks, discontinuities etc.) require fine spacing that cannot be determined a 

priori and trails the system evolution in space and time (i.e., the adaptive mesh refinement). 

Thus, complex, non-uniform, dynamic data structures are needed for development of the 

multi-purpose solver based on explicit finite volume scheme, which are difficult to realize in 

FORTAN with its default rigid data formats.  

 Example of explicit FV: numerical model of the Fourier heat conduction low 

We consider the Fourier heat conduction law as a simple illustrative example to find 

the most efficient C++ solution for simulation of spatially 3D transient heat flow in terms of 

the explicit FVM. The integral form of the flow equation Eqn. (1) contains no source term and 

its cell centered numerical model can be written as Eqn.(2) for unstructured grid of – for 

example – hexahedron type in terms of the explicit FV scheme: 

𝑈𝑖
𝑛+1 = 𝑈𝑖

𝑛 +
𝑑𝑡

𝑉𝑖
 𝐹𝑙 ,𝑖 ∗ 𝑎𝑙 ,𝑖 ∗ 𝑠𝑙 ,𝑖

6
𝑙=1  (2) 

Here 𝑖 is the cell index,  𝑛 indicates the time step number, 𝑈 is a volume specific total energy 

calculated as 𝑈 = 𝑐 ∗ 𝜚 ∗ 𝑇 with 𝑐, 𝜚, 𝑇 being the cell centered specific heat, density and 

temperature, respectively. In Eqn. (2)  𝑑𝑡 is the CFL restricted global time step, 𝐹𝑙 ,𝑖  represents 

𝑙-component of the fluxes normal to the cell face of area 𝑎𝑙 ,𝑖  surrounding 𝑖 –cell given by: 

 𝐹𝑙 ,𝑖 =  𝐹𝑛  =  −𝑘 𝑔𝑟𝑎𝑑 𝑇 𝑛  =  −
𝑘𝑅+ 𝑘𝐿
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 (3) 

𝑠𝑙 ,𝑖 =  
−1, 𝑖𝑛𝑐𝑜𝑚𝑖𝑛𝑔 𝑛𝑙 ,𝑖      

1,  𝑜𝑢𝑡𝑔𝑜𝑖𝑛𝑔 𝑛𝑙 ,𝑖      
  (4) 

Parameters of Eqn. (3) are the properties of two adjacent grid cells (R and L staying for right 

and left, respectively) that share 𝑙-face of 𝑖 –cell. Here 𝑘 denotes the heat conduction 

coefficient and ℎ𝑅𝐿  is a distance between two adjacent cells. The boundary conditions are 

defined by fixed value either of flux or temperature. 



Multi-purpose solver: C++ code organization  

Despite of the obvious simplicity of Eqn (2), it puts a challenging task for C++ in the 

performance competition with FORTRAN even in terms of generic programming paradigm 

[Ref. 4-6]. The origin of the problem is the dominant role of access to the object properties 

(even by using of STL iterators) over the efficiency of the computation algorithm itself 

reaching the same or better performance as FORTRAN by using of generic support  [Ref. 7]. 

To show it, we present below our C++ implementation in details. 

A 3D unstructured grid of hexahedron type is produced by in–house mesh generator 

that records the connectivity relations between the indices of the grid entities (in form of cell–

adjacent faces–adjacent nodes and face–adjacent cells– adjacent nodes) as well as the node 

positions into external file. Doing so, we avoid the need to parallelize the grid connectivity 

matrix by cluster computing and simply prepare a portion of the mesh for calculations on each 

single CPU. The grid part for one computational node includes usually 10
5
 –10

6
 nodes, 10

6
 –

10
7
 faces, 10

5
 –10

6
 cells, which we denote in general as data objects. Each data object 

possesses a list of properties shown in Table 1 and uses a separate numbering system.  

Table 1: Properties of the data objects constituting the numerical grid 

CELL FACE NODE 

- Index 

- Geometry type 

- Volume 

- Center mass 

- Content 

- Conserv. Variables 

- Adjacent faces 

- Adjacent nodes 

 

- Index 

- Geometry type 

- Area 

- Flux 

- Centroid 

- Normal 

- Adjacent cells 

- Adjacent nodes 

 

- Index 

- Position 

- Velocity 

 

 

We apply the concept-bounded (static) polymorphism to achieve a better performance 

and introduce three concepts Cell, Face and Node within the namespace Object in terms of 

abstract types as Base, Topology, and Physics. The last ones model the concept, i.e. they 

implement the requirements on data types describing: 

– some basic characteristics (e.g. value–, counter–, Cartesian coordinate types etc.); 

– distinct topologies (e.g. the underlying data structure for the type cell–adjacent nodes has 

the length of 8 for the cells of hexahedron type and 4 for the cells of tetrahedron type); 

– the sense of the physical problem to be solved (e.g. the internal representation of the 

solution variable – scalar  in the case of heat flow or vector for more complicated problems – 

as well as constitutive data structures that mimic the cell content like multifluid or embedded 

in the cell object).  

For example the Object::Cell possesses a list of associative types, each determined by a 

certain modeling type, the interplay of which defines the complete behavior of the concept: 

typedef typename Base::counter counter_t; 



typedef typename Base::value value_t; 

typedef typename Base::coords coords_t; 

typedef typename Base::identifier identifier_t; 

typedef typename Base::boundary boundary_t; 

typedef typename Topology::cell_adjacent_nodes_t AdjacentNodes; 

typedef typename Topology::cell_adjacent_faces_t AdjacentFaces; 

typedef typename Physics::multifluid_t MultiFluid; 

typedef typename Physics::parameter_t Parameters; 

typedef typename Physics::conservative_variables_t ConsVar; 

We achieve the maximal software reuse by implementing of concepts parameterized over 

these 3 groups of types to represent each grid entity.  Thereby, the types encapsulated in the 

models must fulfill the performance requirement, i.e. they have to provide the fast access to 

the numeric data stored. The specific of explicit FV scheme is caused by the need for multiple 

accesses (say, about 10
8
 times on single CPU) to each single property of the data objects listed 

above. Here the access process dominates over computations during the solution phase. The 

situation is opposite to the implicit schemes, where the intensive calculations on large scale 

numeric structures prevail over the access and where e.g. PETs [Ref. 8], Janus [Ref. 9] or 

DUNE [Ref. 16] provide an extensive support. 

 In details, the data object properties for explicit FVM are usually stored in the form of 

short numeric vectors of a fixed size. For example each grid face of quadrilateral type has 4 

adjacent nodes and the corresponding data structure must represent a mathematical vector of 4 

elements reflecting the sequence of node indices adjacent to the face. Another example is the 

Cartesian coordinate type, i.e. a vector of length 3 with the x–, y– and z– components of the 

grid node position. Thus, the problem is related to selection of the C++ data type for 

implementation of a short numerical sequence of fixed size. Surprised? Indeed, the standard– 

and boost C++ provide a wide spectrum of data structures representing a mathematical vector. 

We summarize in the Table 2 the results of a simple experiment: the clock time is measured, 

spent by access to – for example – the second element of a numerical vector of size 5 

implemented by using of various C++, C and Fortran data structures. This test shows that 

never mind how intelligent we implement the interaction of the grid data structures during the 

solution, the FORTRAN code will provide a better efficiency at least of factor 2.76 by 

implementation of the numeric vectors in terms of C arrays, of factor 3.45 by using of 

boost::array and of factor 5.45 by application of the boost::fusion::vector of the fixed size. 

The only vector C++ data structure providing a better performance than FORTAN is the 

Dune::FieldVector that will be implemented in our future tests. 

 Another concept SOLVER was introduced for implementation of solution phase of 

Eqn (2). It is modeled by abstract types CELL, FACE, NODE that can be specified by the 

types Object::Cell, Object::Face and Object::Node described above. The complete inheritance 

scheme applied is shown in Figure 1. 

 



 

 

 

 

 

 

Table 2: Comparative performance study of a targeting vector element access. A vector of 5 elements is filled 

with random numbers. Then we compare the clock time spent by 10
8
 for–cycles, each calculating the value equal 

to the sum of cycle counter (i) and the second vector element. Results are listed in the 4
th

 column (built under 

bjam with <toolset>, gcc, <optimization>speed: <define>USE_INLINE_ASSEMBLER) and 5
th

 column (build 

under GNU make). The tests were conducted on 1 x AMD Phenom(tm) 9850 Quad-Core Processor ; 2,5 GHz; 4 

GB RAM; gcc version 4.1.2 20071124 (Red Hat 4.1.2-42). 
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std::vector<double> vec (5); 

 

std::vector<double> vec (5); 

 

std::vector<double> vec (5); 

 

std::valarray<double> vec (5); 

 

std::valarray<double> vec (5); 

 

kvector<double, 5> vec; 

 

Dune::FieldVector<double, 5> 

vec; 

 

i+vec[1] 
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boost::array<double, 5> vec; 

 

boost::array<double,5> 

 

boost::ublas<double> vec(5); 

 

mtl::dense_vector<double> vec(5); 

 

boost::fusion::vector5<double, 

double, double, double, double > 

vec; 
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double vec[5]; 

 

gsl_vector * v= gsl_vector_alloc(5) 

 

 

Vec            x; 

PetscScalar    *avec; 

… 

VecSetSizes(x,PETSC_DECIDE,5); 

VecSetType(x,VECSEQ); 

… 

VecGetArray(x,&avec); 
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i + gsl_vector_get(v,1) 
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i +vec(2) 

 

0.243 

 

 

 



 

 

 

Figure 1: Concept-bounded polymorphism implemented for solution of the heat flow equation in terms of 

explicit finite volume scheme. 

 

 

 

 

 

 

 

Generally, the solution phase includes the following steps: 

1. The flux update Eqn (3) requires traverse over all faces, access to indices of the cells 

adjacent to each single face (stored by using of data structure deviated from Topology, 

e.g.  Topology::face_adjacent_cells_t), search for the right/left cell by index and 

access to the properties of each found cell listed in the Table 1 above. 

2. The global time step 𝑑𝑡  is estimated as a minimum over all local time steps, 

calculated for each single cells of the numerical grid. This stage requires traverse over 

all cells with subsequent access to sequence of type Topology::cell_adjacent_faces_t,  

search of - and access to the properties of each face adjacent to the single cell. 

3. Update of the solution variable U according to Eqn. (2) is based on traverse over all 

cells, traverse over adjacent faces for each cell, access to the cell and face properties. 

Thus, another problem of explicit FV scheme is related to the choice of a suitable 

container to store the whole set of data objects featuring the grid. The container type must 

support not only the fast search of the data object by index.  The algorithms for insert of new-, 

remove and dispose of the old data objects within the container must be high efficient for 

adaptive mesh refinement. Finally, the choice of container is restricted by performance of 

access to the object properties. Table 3 presents comparison of std::hash_map container [Ref. 

10] with the boost::intrusive::unordered_set [Ref. 17]. We refer the reader to [Ref. 17] for 

details about distinctions in intrusive and non-intrusive containers. Our study shows that the 

boost::intrusive::unordered_set provides a factor 2.45 better performance than the 

std::hash_map by access to the object properties. It is about 10 times faster by deleting of the 

objects from container. We implemented boost::intrusive::unordered_set to store the numeric 

grid (cells, faces, nodes) needed for solution of Eqn(2) with the properties listed in Table 1. 
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Table 3: Benchmarking of std::hash_map and boost::intrusive::unordered_set containers. For illustration we 

store the objects that represent a simple cuboid as a class template constructed by cuboid index (that does not 

coincide with the map key, keeping in mind adaptive mesh refinement) with member functions dx(), dy(),dz() 

and volume() referring to the cuboid unit length in each dimension and its volume, respectively. The test 

includes the clock time measurements of the following processes. We initialize 10
6
 objects and fill with them the 

container (1). Then we traverse the container by using of iterator and measure access time to the x-unit length 

and to the volume of each cuboid stored (2). Finally we delete all objects from container (3). The tests were 

conducted on 1 x AMD Phenom(tm) 9850 Quad-Core Processor ; 2,5 GHz; 4 GB RAM; gcc version 4.1.2 

20071124 (Red Hat 4.1.2-42). 
  

 boost::intrusive::unordered_set, 

time [sec] 

std::hash_map, 

time [sec] 

1 1.07 1.05 

2 0.53 1.3 

3 0.03 0.25 

 

In conclusion, we developed a static library build under Boost.Build [Ref. 18] for the task 

managing. Manipulation of the processes for the grid initialization and solution is driven by 

intrusive pointers of the Boost Smart pointer library [Ref. 19] that provide automatic life time 

management of the objects. 

Results and conclusion 

We measured the clock time for complete solution phase at single time step for the 

following 2 cases: all vectors of fixed size are implemented as a boost::array (1) and as a 

numbered vector boost::fusion::vector (2), since the Boost Fusion library provides a broad 

spectrum of high-efficient run time algorithms for the work on sequences. As expected from 

the analysis above (s. Table 2) our C++ solution is slower than the FORTAN one. The results 

are presented in Table 4 in comparison with FORTRAN solution. 

Table 4: Performance comparison of C++ and Fortran implementations for single simulation period by 

numerical solution of the heat flow equation in terms of explicit FVM. The tests were conducted on 1 x AMD 

Phenom(tm) 9850 Quad-Core Processor ; 2,5 GHz; 4 GB RAM; gcc version 4.1.2 20071124 (Red Hat 4.1.2-42). 

 
   C++ 

Time [sec] 

FORTRAN 

Time [sec] 

boost::array 0.25 0.06 

boost::fusion::vectorN 0.63 

Generic programming paradigm is an established technique for development of high-

performance computing algorithms. Nevertheless, not only the algorithms, but also access 

must be optimized within the numeric libraries to achieve the at least the same efficiency as in 

FORTRAN for simulations in terms of explicit finite volume scheme. Our study shows that 

only the recently discovered DUNE project [Ref. 16] provides the promising for our purpose 

data structures, which we plan to implement in our further tests. 
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